Advertisement

Ecological Climate Impact Research in High Mountain Environments: GLORIA (Global Observation Research Initiative in Alpine Environments) — its Roots, Purpose and Long-term Perspectives

  • Harald Pauli
  • Michael Gottfried
  • Daniela Hohenwallner
  • Karl Reiter
  • Georg Grabherr
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

High mountain ecosystems are sensitive to climate change (Box 1). Historical records of the flora on high summits in the Alps provide an important baseline against which climate-induced effects on high mountain ecosystems can be assessed. Reinvestigations of these old “monitoring summits” have shown that mountain plants have migrated upwards during the 20th century. An increase of atmospheric temperatures since the late 19th century is the most likely cause of this upward shift (Gottfried et al. 1994; Grabherr et al. 1994; 1995; 2001a; Pauli et al. 1996; 2001a). This “summit study” underlined the importance of long-term monitoring for assessing climate change effects on mountain ecosystems and initiated the establishment of extensive monitoring networks in mountain environments.

Keywords

Alpine vegetation Biodiversity Climate change Global in-situ observation network Long-term monitoring Mountain summits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrate, S. (1998). “Vegetationskarte des Schrankogel, Stubaier Alpen.” Unpublished M.S. thesis, Universität Wien, Vienna.Google Scholar
  2. Ammann, B. (1995). Paleorecords of plant diversity in the Alps. In “Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences.” (F. S. Chapin III, and C. Körner, Eds.), pp. 136–149. Ecological Studies. Springer, Berlin.Google Scholar
  3. Barthlott, W., Lauer, W., and Placke, A. (1996). Global distribution of species diversity in vascular plants: Towards a world map of phytodiversity. Erdkunde 50, 317–327.CrossRefGoogle Scholar
  4. Becker, A., and Bugmann, H. (1997). “Predicting global change impacts on mountain hydrology and ecology: Integrated catchment hydrology/altitudinal gradient studies.” IGBP Report 43, Stockholm.Google Scholar
  5. Becker, A., and Bugmann, H. (2001). “Global change and mountain regions. The Mountain Research Initiative.” IGBP Report 49, Stockholm.Google Scholar
  6. Dullinger, S. (1998). “Vegetation des Schrankogel, Stubaier Alpen.” Unpublished M.S. thesis, Universität Wien, Vienna.Google Scholar
  7. Ertl, S., Hülber, K., Reiter, K., and Grabherr, G. (2002). Einfluss von Weidevieh und Wild auf die Ausbreitung alpiner Gefäßpflanzen. In “Bericht über das 10. Österreichische Botanikertreffen.” pp. 7–10. Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, Irdning.Google Scholar
  8. Gottfried, M., Pauli, H., and Grabherr, G. (1994). Die Alpen im “Treibhaus”: Nachweise für das erwärmungsbedingte Höhersteigen der alpinen und nivalen Vegetation. Jahrbuch des Vereins zum Schutz der Bergwelt 59, 13–27.Google Scholar
  9. Gottfried, M., Pauli, H., and Grabherr, G. (1998). Prediction of vegetation patterns at the limits of plant life: A new view of the alpine-nival ecotone. Arctic and Alpine Research 30, 207–221.CrossRefGoogle Scholar
  10. Gottfried, M., Pauli, H., Reiter, K., and Grabherr, G. (1999a). A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate warming. Diversity and Distributions 5, 241–251.CrossRefGoogle Scholar
  11. Gottfried, M., Pauli, H., Reiter, K., and Grabherr, G. (1999b). The Austrian research initiative: Global change effects at the low-temperature limits of plant life. In “Global change in the mountains.” (M. F. Price, T. H. Mather, and E. C. Robertson, Eds.), pp. 54–56. Parthenon, New York.Google Scholar
  12. Gottfried, M., Pauli, H., Hohenwallner, D., Reiter, K., and Grabherr, G. (2002a). GLORIA — the Global Observation Research Initiative in Alpine Environments: Wo stehen wir ? Petermanns Geographische Mitteilungen 146, 69–71.Google Scholar
  13. Gottfried, M., Pauli, H., Reiter, K., and Grabherr, G. (2002b). Potential effects of climate change on alpine and nival plants in the Alps. In “Mountain biodiversity — A global assessment.” (C. Körner, and E. M. Spehn, Eds.), pp. 213–223. Parthenon, New York.Google Scholar
  14. Grabherr, G., Gottfried, M., and Pauli, H. (1994). Climate effects on mountain plants. Nature 369, 448.CrossRefGoogle Scholar
  15. Grabherr, G., Gottfried, M., Gruber, A., and Pauli, H. (1995). Patterns and current changes in alpine plant diversity. In “Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences.” (F. S. Chapin III, and C. Körner, Eds.), pp. 167–181. Ecological Studies. Springer, Berlin.CrossRefGoogle Scholar
  16. Grabherr, G., Gottfried, M., and Pauli, H. (2000a). Hochgebirge als “hot spots” der Biodiversität — dargestellt am Beispiel der Phytodiversität. Berichte der Reinhold-Tüxen-Gesellschaft 12, 101–112.Google Scholar
  17. Grabherr, G., Gottfried, M., and Pauli, H. (2000b). GLORIA: A global observation research initiative in alpine environments. Mountain Research and Development 20, 190–191.CrossRefGoogle Scholar
  18. Grabherr, G., Gottfried, M., and Pauli, H. (2001a). Long-term monitoring of mountain peaks in the Alps. In “Biomonitoring: General and applied aspects on regional and global scales.” (C. A. Burga, and A. Kratochwil, Eds.), pp. 153–177. Tasks for Vegetation Science. Kluwer, Dordrecht.CrossRefGoogle Scholar
  19. Grabherr, G., Gottfried, M., and Pauli, H. (2001b). High mountain environment as indicator of global change. In “Global change and protected areas.” (G. Visconti, M. Beniston, E. D. Iannorelli, and D. Barba, Eds.), pp. 331–345. Kluwer, Dordrecht.CrossRefGoogle Scholar
  20. Grabherr, G., Gottfried, M., Hohenwallner, D., Pauli, H., and Reiter, K. (2001c). GLORIA-Europe: Report on the kickoff meeting, 25–29 April, Vienna. Mountain Research and Development 21, 294–295.CrossRefGoogle Scholar
  21. Grabherr, G., Gottfried, M., and Pauli, H. (2002). Ökologische Effekte an den Grenzen des Lebens. Dossier: Klima. Spektrum der Wissenschaft, 84–89.Google Scholar
  22. Hohenwallner, D., Zechmeister, H., and Grabherr, G. (2002). Bryophyten und ihre Eignung als Indikatoren für den Klimawandel im Hochgebirge — erste Ergebnisse. In “Bericht über das 10. Österreichische Botanikertreffen.” pp. 19–21. Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, Irdning.Google Scholar
  23. Hülber, K., Ertl, S., Reiter, K., Gottfried, M., and Grabherr, G. (2002a). Effekte von Weidetieren am alpin/nivalen Ökoton. In “Bericht über das 10. Österreichische Botanikertreffen.” pp. 119–120. Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, Irdning.Google Scholar
  24. Hülber, K., Gottfried, M., Pauli, H., and Grabherr, G. (2002b). Phänologie ausgewählter Arten am alpin/nivalen Ökoton der Zentralalpen. In “Bericht über das 10. Österreichische Botanikertreffen.” pp. 23 – 25. Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, Irdning.Google Scholar
  25. Keller, F., and Körner, C. (2003). The role of photoperiodism in alpine plant development. Arctic, Antartic and Alpine research (in press).Google Scholar
  26. Körner, C. (2002). Mountain biodiversity, its causes and function: An overview. In “Mountain biodiversity: A global assessment.” (C. Körner, and E. M. Spehn, Eds.), pp. 3–20. Parthenon, New York.Google Scholar
  27. Körner, C., and Spehn, E. M., Eds. (2002). “Mountain biodiversity: A global assessment.” Parthenon, New York.Google Scholar
  28. Pauli, H., Gottfried, M., and Grabherr, G. (1996). Effects of climate change on mountain ecosystems — Upward shifting of alpine plants. World Resource Review 8, 382–390.Google Scholar
  29. Pauli, H., Gottfried, M., and Grabherr, G. (1999a). A global indicator network for climate change effects on the vegetation in high mountain ecosystems — Proposals from an Austrian IGBP/GCTE-research initiative. In “Global change in the mountains.” (M. F. Price, T. H. Mather, and E. C. Robertson, Eds.), pp. 25–28. Parthenon, New York.Google Scholar
  30. Pauli, H., Gottfried, M., and Grabherr, G. (1999b). Vascular plant distribution patterns at the low-temperature limits of plant life: The alpine-nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29, 297–325.CrossRefGoogle Scholar
  31. Pauli, H., Gottfried, M., and Grabherr, G. (2001a). High summits of the Alps in a changing climate. The oldest observation series on high mountain plant diversity in Europe. In “Fingerprints of climate change: Adapted behaviour and shifting species ranges.” (G.-R. Walther, C. A. Burga, and P. J. Edwards, Eds.), pp. 139–149. Kluwer, New York.CrossRefGoogle Scholar
  32. Pauli, H., Gottfried, M., Reiter, K., and Grabherr, G. (2001b). High mountain summits as sensitive indicators of climate change effects on vegetation patterns: The “Multi Summit-Approach” of GLORIA (Global Observation Research Initiative in Alpine Environments). In “Global change and protected areas.” (G. Visconti, M. Beniston, E. D. Iannorelli, and D. Barba, Eds.), pp. 45–51. Kluwer, Dordrecht.CrossRefGoogle Scholar
  33. Pauli, H., Gottfried, M., Hohenwallner, D., Reiter, K., and Grabherr, G. (2003a). The GLORIA field manual — Multi-Summit approach. 4th version (in prep.).Google Scholar
  34. Pauli, H., Gottfried, M., Dirnböck, T., Dullinger, S., and Grabherr, G. (2003b). Assessing the long-term dynamics of endemic plants at summit habitats. In “Alpine biodiversity in Europe — A Europe-wide assessment of biological richness and change.” (L. Nagy, G. Grabherr, C. Körner, and D. B. A. Thompson, Eds.), pp. 195–207. Ecological Studies. Springer, Heidelberg.CrossRefGoogle Scholar
  35. Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., and Pounds, A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421, 57–60.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Harald Pauli
    • 1
  • Michael Gottfried
    • 1
  • Daniela Hohenwallner
    • 1
  • Karl Reiter
    • 1
  • Georg Grabherr
    • 1
  1. 1.Department of Conservation Biology, Vegetation and Landscape Ecology, Institute of Ecology and Conservation BiologyUniversity of ViennaViennaAustria

Personalised recommendations