Skip to main content

The Use of Hydrological Models for the Simulation of Climate Change Impacts on Mountain Hydrology

  • Chapter
Global Change and Mountain Regions

Part of the book series: Advances in Global Change Research ((AGLO,volume 23))

Abstract

According to the Second and Third Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC 1996; 2001) the increase in mean surface air temperature of the northern hemisphere was larger in the 20th century than in any other period of the last 1000 years. The decade 1990–1999 was the warmest of this time period. It is also believed that this increase in air temperature will be accompanied by intensification of the global hydrological cycle and, in the same chain of cause and effect, by enhanced evaporation and precipitation (Schär and Frei, this volume). However, the scientific community needs to gain a better understanding of the biosphere-atmosphere system before being confident on the predictions of hvdrolodcal processes in a future climate (Frei et al. 2000: Ohmura and Wild 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschwanden, H., and Weingartner, R. (1985). „Die Abflussregimes der Schweiz.“Publikation Gewässerkunde 65, Bern.

    Google Scholar 

  • Fliri, F. (1992). “Der Schnee in Nord- und Ost-Tirol. 1895–1991.” Bd. 1, Universitaetsverlag Innsbruck, Innsbruck.

    Google Scholar 

  • Frei, C., Schär, C., Lüthi, D., and Davies, H. C. (1998). Heavy precipitation processes in a warmer climate. Geophysical Research Letters 25, 1431–1434.

    Article  CAS  Google Scholar 

  • Frei, C., Davies, H. C., Gurtz, J., and Schär, C. (2000). Climate dynamics and extreme precipitation and flood events in Central Europe. Integrated Assessment 1, 281–299.

    Article  Google Scholar 

  • Glaciological Commission of the Swiss Academy of Science (2002). „The Swiss glaciers.“ Glaciological Report 121 and 122. VAW, Federal Institute of Technology, ETH Zurich.

    Google Scholar 

  • Grabs, W., Ed. (1997). “Impact of climate change on hydrological regimes and water resources management in the Rhine basin.” International Comission for the Hydrology of the Rhine Basin (CHR). CHR-Report No. 1–16.

    Google Scholar 

  • Gurtz, J., Baltensweiler, A., Lang, H., Menzel, L., and Schulla, J. (1997). “Auswirkungen von klimatischen Variationen auf Wasserhaushalt und Abfluss im Flussgebiet des Rheins.” Abschlussbericht Nationales Forschungsprogramm 31: Klimaänderungen und Naturkatastrophen. vdf-Hochschulverlag ETH Zurich, Zurich.

    Google Scholar 

  • Gurtz, J., Baltensweiler, A., and Lang, H. (1999). Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins. Hydrological Processes 13, 2751–2768.

    Article  Google Scholar 

  • Gurtz, J., Zappa, M., Jasper, K., Lang, H., Verbunt, M., Badoux, A., and Vitvar T. (2003a). A comparative study in modelling runoff and its components in two mountainous catchments. Hydrological Processes 17, 297–311.

    Article  Google Scholar 

  • Gurtz, J., Zappa, M., Verbunt, M., and Jasper, K. (2003b). Advanced applications of distributed hydrological models in mountainous catchments. In “Climate and hydrology in mountain areas.” (C. De Jong, D. Collins, and R. Ranzi, Eds.). John Wiley & Sons, Chichester, UK (submitted).

    Google Scholar 

  • Hock, R. (1999). Distributed temperature-index ice- and snowmelt model including potential direct solar radiation. Journal of Glaciology 45, 101–111.

    Google Scholar 

  • Hulme, M., Conway, D., Brown, O., and Barrow, E. (1994). “A 1961–1990 baseline climatology and future climate change scenarios for Great Brittain and Europe. Part III: Climate change scenarios for Great Britain and Europe”. Climatic Research Unit, University of East Anglia, Norwich.

    Google Scholar 

  • IPCC (1996). “Climate change 1995. Second assessment report of the Intergovernmental Panel on Climate Change: Impacts, adaptions and mitigation of change.” WMO/UNEP, Cambrigde University Press.

    Google Scholar 

  • IPCC (2001). “Climate change 2001. Third assessment report of the Intergovernmental Panel on Climate Change: Impacts, adaptions and mitigation of climate change.” WMO/UNEP, Cambrigde University Press.

    Google Scholar 

  • Jasper, K. (2001). “Hydrological modelling of alpine river catchments using output variables from atmospheric models.” Dissertation No. 14’385, ETH Zurich, Institute for Atmospheric and Climate Science.

    Google Scholar 

  • Jasper, K., Gurtz, J., and Lang, H. (2002). Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. Journal of Hydrology 267, 38–50.

    Article  Google Scholar 

  • Kleinn, J. (2002). “Climate change and runoff statistics in the Rhine basin: A process study with a coupled climate-runoff model.” Dissertation No. 14663, ETH Zurich, Institute for Atmospheric and Climate Science.

    Google Scholar 

  • Klok, L., Jasper, K., Roelofsma, K.P., Badoux, A., and Gurtz, J. (2001). The application of complex distributed hydrological models to a heavily glacerized Alpine river catchment. Hydrological Sciences Journal 46, 553–570.

    Article  Google Scholar 

  • Lifland, J. (2003). The North Atlantic Oscillation: Climatic significance and environmental impact. EOS 84, 73.

    Article  Google Scholar 

  • Menzel, L. (1997). “Modellierung der Evapotranspiration im System Boden-Pflanze-Atmosphäre.” Zürcher Geographische Schriften 67, Geographical Institute ETH Zurich.

    Google Scholar 

  • Meteodat and IACETH (2002). “Joint longterm observation project on Wägital snow conditions.” Annual Report, Meteodat GmbH Zurich and Institute for Atmospheric and Climate Science ETH Zurich.

    Google Scholar 

  • Monteith, J. L. (1965). Evaporation and environment. In “The state and movement of water in living organism,” Proceedings of the 19th Symposium, Society of Experimental Biology, Cambridge University Press, London, 205–234.

    Google Scholar 

  • Ohmura, A., and Wild, M. (2002). Is the hydrological cycle accelerating? Science 298, 1345–1346.

    Article  CAS  Google Scholar 

  • Ohmura, A. (2001). Physical basis for the temperature-based melt-index method. Journal of Applied Meteorology 40, 753–761.

    Article  Google Scholar 

  • Schär, C., Davies, T. D., Frei, C., Wanner, H., Widmann, M., Wild, M., and Davies, H. C. (1998). Current alpine climate. In “Views from the Alps: Regional perspectives on climate change.” (P. Cebon, U. Dahinden, H. C. Davies, D. M. Imboden, and C. Jäger, C., Eds.), pp. 21–72. MIT Press, Boston.

    Google Scholar 

  • Schulla, J. (1997). “Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen von Klimaänderungen.” Zürcher Geographische Schriften 69, Geographical Institute ETH Zurich.

    Google Scholar 

  • Verbunt, M., Gurtz, J., Jasper, K., Lang, H., Warmerdam, P., and Zappa, M. (2003). The hydrological role of snow and glaciers in alpine river basins and their distributed modelling. Journal of Hydrology (accepted).

    Google Scholar 

  • Viviroli, D., Weingartner, R., and Messerli, B. (2003). Assessing the hydrological significance of the World’s mountains. Mountain Research and Development 23, 32–40.

    Article  Google Scholar 

  • Zappa, M., and Gurtz, J. (2002). The spatial resolution of physiographic data as sensitive variable for distributed hydrological simulations in prealpine and alpine catchments. In “Water resources and environment research, Proceedings of ICWRER 2002.” Band 28, Volume I, 101–105.

    Google Scholar 

  • Zappa, M. (2002). “Multiple-response verification of a distributed hydrological model at different spatial scales.” Dissertation No. 14895, ETH Zurich, Institute for Atmospheric and Climate Science.

    Google Scholar 

  • Zappa, M., Pos, F., Strasser, U., Warmerdam, P., and Gurtz, J. (2003). Seasonal water balance of an alpine catchment as evaluated by different methods for spatially distributed snow melt modelling. Nordic Hydrology 34 (in print).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer. Printed in the Netherlands

About this chapter

Cite this chapter

Gurtz, J., Lang, H., Verbunt, M., Zappa, M. (2005). The Use of Hydrological Models for the Simulation of Climate Change Impacts on Mountain Hydrology. In: Huber, U.M., Bugmann, H.K.M., Reasoner, M.A. (eds) Global Change and Mountain Regions. Advances in Global Change Research, vol 23. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3508-X_34

Download citation

Publish with us

Policies and ethics