Advertisement

Identifying Space-time Patterns of Runoff Generation: A Case Study from the Löhnersbach Catchment, Austrian Alps

  • Robert Kirnbauer
  • Günter Blöschl
  • Peter Haas
  • Gabriele Müller
  • Bruno Merz
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

Runoff generation is a result of the interplay of a range of processes, the relative magnitudes of which vary, among other things, with climate, catchment properties, and catchment scale. The variability of runoff generation processes within a mountain catchment and the variability from event to event is one particularly intriguing aspect. A better understanding of these spatio-temporal patterns of runoff generation is critical for obtaining realistic model simulations of events, such as extreme floods, and of run-off behaviour associated with changes in environmental and land use conditions. Estimating runoff generation is very difficult as it involves a high degree of extrapolation. Difficulties in accurately assessing runoff in mountains have been highlighted by local-scale field experiments (e.g. Scherrer 1997), observations in experimental basins (e.g. Anderson et al. 1997; Kirnbauer and Haas 1998; Torres et al. 1998; Müller and Peschke 2000; Uchida et al. 2001), and modelling studies (e.g. Moore and Grayson 1991) that emphasize the spatially highly heterogeneous nature of runoff. Also, different runoff processes may dominate at different spatial scales (see e.g. Blöschl 1996; Uhlenbrook and Leibundgut 1997). Although it is possible to estimate runoff for yet unobserved situations with hydrological simulation models, the reliability of such estimates is notoriously poor, particularly when moving from the plot scale or small catchment scale to medium sized catchments (DFG 1995). There is still a gap between the understanding of runoff generation processes at the plot scale and process-based hydrological modelling at the catchment scale.

Keywords

Austrian Alps Löhnersbach Microcatchments Process study Runoff coefficient Runoff generation Saturation areas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M. G., and Burt, T. P. (1990). “ Process studies in hillslope hydrology.” John Wiley & Sons, hichester.Google Scholar
  2. Anderson, S. P., Dietrich, W. E., Montgomery, D. R., Torres, R., Conrad, M. E., and Loague, K. (1997) Ubsurface flowpaths in a steep, unchanneled catchment. Water Resources Research 33, 2637–2653.CrossRefGoogle Scholar
  3. Blöschl, G. (1996). „Scale and scaling in hydrology,“ Wiener Mitteilungen, Band 132. Habilitationsschrift. nstitut für Hydraulik, Gewässerkunde und Wasserwirtschaft, Technische Universität Wien.Google Scholar
  4. DFG (1995). Hochwasser in Deutschland unter Aspekten globaler Veränderungen. In „Bericht über das DFG-Rundgespräch am 9.10.1995 in Potsdam.“ Potsdam-Institut für Klimafolgenforschung, Potsdam.Google Scholar
  5. Dunne, T. (1983). Relation of field studies and modelling in the prediction of storm runoff. Journal of Hydrology 65, 25–48.CrossRefGoogle Scholar
  6. Grayson, R. B., and Blöschl, G., Eds. (2000). “ Spatial patterns in catchment hydrology: Observations and modelling.” Cambridge University Press, Cambridge.Google Scholar
  7. Gutknecht, D. (1997). Vielfältigkeit — Zum Umgang mit einem wichtigen Aspekt hydrologischer Prozesse. In „Wasserbau — Visionen für das nächste Jahrtausend, Festschrift zum 60.Geburtstag von Prof. Scheuerlein.“ (R. Friedrich, Ed.), pp. 183–197. D.&V Thaur, Innsbruck.Google Scholar
  8. Kirnbauer, R., and Haas, P. (1998). Observations on runoff generation mechanisms in small Alpine catchments. In “ Hydrology, water resources and ecology in headwaters.” (K. Kovar, U. Tappeiner, N. E. Peters, and R. G. Craig, Eds.), pp. 239–247. Proceedings of the HeadWater’98 Conference, Meran, Italy, Apr. 1998). IAHS Publication 248.Google Scholar
  9. Merz, R., Piock-Ellena, U., Blöschl, G., and Kirnbauer, R. (2000). „Skalierungsprobleme bei der Regionalisierung von Hochwässern. Endbericht an die Österreichische Akademie der Wissenschaften, HÖ 18.“ Institut für Hydraulik, Gewässerkunde und Wasserwirtschaft, Technische Universität Wien, Oktober 2000.Google Scholar
  10. Moore, I. D., and Grayson, R. B. (1991). Terrain based prediction of runoff with vector elevation data. Water Resoures Research 27, 1177–1191.CrossRefGoogle Scholar
  11. Müller, G., and Peschke, G. (2000). Hydrologische Prozessuntersuchungen auf der Basis adäquater Messnetze. Österreichische Wasser- undAbfallwirtschaft 52, 94–104.Google Scholar
  12. Peschke, G., Etzenberg, C., Müller, G., Töpfer, J. and Zimmermann, S. (1999). „Das wissensbasierte System FLAB: Ein Instrument zur rechnergestützten Bestimmung von Landschaftseinheiten mit gleicher Abflußbildung.“ IHI-Schriften H.10. Internationales Hochschulinstitut Zittau, Zittau.Google Scholar
  13. Scherrer, S. (1997). „Abflußbildung bei Starkniederschlägen. Identifikation von Abflußprozessen mittels künstlicher Niederschläge.“ Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Heft 147.Google Scholar
  14. Tilch, N., Uhlenbrook, S., Didszun, J., Leibundgut, Ch., Zillgens, B., Kirnbauer, R., and Merz, B. (2003). Entschlüsselung von Abflussbildungsprozessen mit Hilfe tracerhydrologischer Ansätze in einem alpinen Einzugsgebiet. Österreichische Wasser- und Abfallwirtschaft 55, 9–17.Google Scholar
  15. Torres, R., Dietrich, W E., Montgomery, D. R., Anderson, S. P., and Loague, K. (1998). Unsaturated zone processes and the hydrologic response of a steep, unchanneled catchment. Water Resources Research 34, 1865–1879.CrossRefGoogle Scholar
  16. Uchida, T., Kosugi, K., and Mizuyama, T. (2001). Effects of pipeflow on hydrological process and its relation to landslide: A review of pipeflow studies in forested headwater catchments. Hydrological Processes 15, 2151–2174.CrossRefGoogle Scholar
  17. Uhlenbrook, S., and Leibundgut, C. (1997). Abflußbildung bei Hochwasser in verschiedenen Raumskalen. Wasser und Boden 49, 13–22.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Robert Kirnbauer
    • 1
  • Günter Blöschl
    • 1
  • Peter Haas
    • 1
  • Gabriele Müller
    • 2
  • Bruno Merz
    • 3
  1. 1.Institute of Hydraulics, Hydrology and Water Resources ManagementVienna University of TechnologyViennaAustria
  2. 2.Forestry, Environment and Water Management, Hydrographical Central OfficeFederal Ministry of AgricultureViennaAustria
  3. 3.GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations