Runoff Generation Processes on Hillslopes and Their Susceptibility to Global Change

  • Stefan Uhlenbrook
  • Jens Didszun
  • Chris Leibundgut
Part of the Advances in Global Change Research book series (AGLO, volume 23)


Global change will influence hillslope hydrological processes for a variety of reasons. On the one hand, climate change might alter the hydrological input, i.e. precipitation and snow melt, which might cause an increase or decrease in the intensity of specific hillslope processes. For instance, overland flow might be amplified by increased rain intensities (Horton 1933) or by reduced infiltration due to surface crusts (Yair 1990) or increased hydrophobicity (Doerr et al. 2002), triggered by longer and more pronounced drought periods. However, overland flow could also be significantly influenced by antecedent moisture conditions of the substrate that were either altered due to wetter climate and reduced evapotranspiration at a site or due to different snow and snow melt regimes, changing the hydrological input for a specific precipitation event. On the other hand, global change in the form of land use changes will play a key role in defining the dominant runoff generation processes on hillslopes (cf. summary given in DVWK 1999).


Hill slope hydrology Hydrograph separation Runoff generation Tracer methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, S. P, Dietrich, W. E., Montgomery, D. R., Torres, R., Conrad, M. E., and Loague, K. (1997). Subsurface flow paths in a steep, unchanneled catchment. Water Resource Research 33, 2637–2654.CrossRefGoogle Scholar
  2. Bonell, M. (1998). Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. Journal of American Water Resources Association 34, 765–785.CrossRefGoogle Scholar
  3. Burns, D. A., McDonnell, J. J., Hooper, R. B., Peters, N. E., Freer, J. E., Kendall, C., and Beven, K. (2001). Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia/USA). Hydrological Processes 15, 1903–1924.CrossRefGoogle Scholar
  4. Buttle, J. M. (1994): Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Progress in Physical Geography 18, 16–41.CrossRefGoogle Scholar
  5. Christophersen, N. C., Neal, C., Hooper, R. P., Vogt, R. D., and Andersen, S. (1990). Modelling streamwater chemistry as a mixture of soilwater end-members: A step towards second-generation acidification models. Journal of Hydrology 116, 307–320.CrossRefGoogle Scholar
  6. Doerr, S. H., Ferreira, A. J. D., Walsh, R. P. D., Shakesby, R. A., Leighton-Boyce, G., and Coelho,C. O. A. (2002). Soil water repellency as a potential parameter in rainfall-runoff modelling: Experimental evidence at point to catchment scales from Portugal. Hydrological Processes (in press).Google Scholar
  7. Deutscher Verband für Wasserwirtschaft und Kulturbau (DVWK) (1999). Einflüsse land- und forstwirtschaftlicher Maßnahmen auf den Hochwasserabfluss: Wissensstand, Skalenprobleme, Modellansätze. DVWK Materialien 7.Google Scholar
  8. Flury, M., Flühler, H., Jury, W. A., and Leuenberger, J. (1994). Susceptibility of soils to preferential flow of water: A field study. Water Resources Research 30, 1945–1954.CrossRefGoogle Scholar
  9. Hoeg, S., Uhlenbrook, S., and Leibundgut, Ch. (2000). Hydrograph separation in a mountainous catchment: Combining hydrochemical and isotopic tracers. Hydrological Processes 14, 1199–1216.CrossRefGoogle Scholar
  10. Hooper, R. P. (2001). Applying the scientific method to small catchment studies: A review of the Panola Mountain experience. Hydrological Processes 15, 2039–2050.CrossRefGoogle Scholar
  11. Horton, R. E. (1933). The role of infiltration in the hydrological cycle. Transaction American Geophysical Union 14, 446–460.CrossRefGoogle Scholar
  12. Institut für Hydrologie (IHF) (2002). Determination of runoff generation processes and process-oriented catchment modelling. Report for the grant of the German research foundation (DGF), report of the Institute of Hydrology, University of Freiburg, No. 112, Freiburg.Google Scholar
  13. Jones, J. (2000). Hydrological processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon. Water Resource Research 41, 2621–2642.CrossRefGoogle Scholar
  14. Lange J., Greenbaum, N., Husary, S., Ghanem, M., Leibundgut, C., and Schick, A. P. (2003). Runoff generation from successive simulated rainfalls on a rocky, semi-arid, Mediterranean hillslope. Hydrological Processes 17, 279–296.CrossRefGoogle Scholar
  15. Leibundgut, Ch. (1998). Tracer-based assessment of vulnerability in mountainous headwaters. IAHS Publication No. 248, p. 317.Google Scholar
  16. McDonnell, J. J. (1990). A rationale for old water discharge through macropores in a steep, humid catchment. Water Resource Research 26, 2821–2332.CrossRefGoogle Scholar
  17. Mehlhorn, J., Armbruster, F., Uhlenbrook, S., and Leibundgut, Ch. (1998). Determination of the geomorphological instantaneous unit hydrograph using tracer experiments in a headwater basin. IAHSPublication 248, 327–336.Google Scholar
  18. Mosley, M. P. (1982). Subsurface flow velocities through selected forest soils, south island, New Zealand. Journal of Hydrology 55, 65–92.CrossRefGoogle Scholar
  19. Rehfuess, K. E. (1990). Waldböden: Entwicklung, Eigenschaften und Nutzung. Pareys Studientexte 29. Paul Parey, Hamburg.Google Scholar
  20. Sherlock, M., Chapell, N., and McDonnell, J. J. (2000). The effects of experimental uncertainty on the calculation of hillslope flow paths. Hydrological Processes 14, 2457–2472.CrossRefGoogle Scholar
  21. Sklash, M. G., and Farvolden, R. N. (1979). The role of groundwater in storm runoff. Journal of Hydrology 43, 45–65.CrossRefGoogle Scholar
  22. Tilch, N., Uhlenbrook, S., and Leibundgut, Ch. (2002). Regionalisierungsverfahren zur Ausweisung von Hydrotopen in von periglazialem Hangschutt geprägten Gebieten. Grundwasser, Heft 4, 206–216.Google Scholar
  23. Uhlenbrook, S., and Leibundgut, Ch. (1997a). Investigation of preferential flow in the unsaturated zone using artificial tracer. In “ Tracer Hydrology.” 7th International Symposium on Water Tracing (A. Kranjc, Ed.). pp. 181–188. A. A. Balkema, Rotterdam.Google Scholar
  24. Uhlenbrook, S., and Leibundgut, Ch. (1997b). Abflussbildung bei Hochwasser. Wasser und Boden 49, 13–22.Google Scholar
  25. Uhlenbrook, S. (1999). Untersuchung und Modellierung der Abflussbildung in einem mesoskaligen Einzugsgebiet. Freiburger Schriften zur Hydrologie 10, Universität Freiburg.Google Scholar
  26. Uhlenbrook, S., Frey M., Leibundgut, Ch., and Maloszewski, P. (2002). Residence time based hydrograph separations in a meso-scale mountainous basin at event and seasonal time scales. Water Resource Research 38, 1–14.CrossRefGoogle Scholar
  27. Yair, A. (1990). Runoff generation in a sandy area, the Nizzana sands western Negev, Israel. Earth Surface Processes and Landforms 15, 596–609.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Stefan Uhlenbrook
    • 1
  • Jens Didszun
    • 1
  • Chris Leibundgut
    • 1
  1. 1.Institute of HydrologyUniversity of FreiburgFreiburgGermany

Personalised recommendations