Understanding the Spatial Heterogeneity of Global Environmental Change in Mountain Regions

  • Sarah L. Shafer
  • Patrick J. Bartlein
  • Cathy Whitlock
Part of the Advances in Global Change Research book series (AGLO, volume 23)


One of the challenges for global environmental change research is to understand how future climate changes will be expressed in mountain regions. The physiographic complexity of mountains creates environments that can be highly variable over relatively short distances. This spatial heterogeneity reflects a hierarchy of environmental controls. At regional scales, insolation and atmospheric circulation features determine the dominant regional climate patterns that affect mountain regions. At finer spatial scales, substrate, aspect, elevation, and a number of other environmental factors influence ecosystem dynamics. Vegetation, for example, is affected by all levels of this hierarchy, from regional-scale climate regimes down to site-specific features, such as substrate type (cf. Körner, this volume).


Future climate change Holocene Paleoenvironmental change Rocky Mountains Spatial heterogeneity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. S. (1996). Postglacial biogeography of Sierra lodgepole pine (Pimis contorta var. murrayana) in California. Ecoscience 3, 343–351.Google Scholar
  2. Bonan, G. B. (1996). “A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide.” NCAR Technical Note NCAR/TN-417+STR, NC AR, Boulder.Google Scholar
  3. Brunelle-Daines, A. R. (2002). “Holocene changes in fire, climate, and vegetation in the northern Rocky Mountains of Idaho and western Montana.” Unpublished Ph.D. thesis, University of Oregon, Eugene.Google Scholar
  4. Bryson, R. A., and Hare, F. K. (1974). The climate of North America. In “Climates of North America. World survey of climatology. Volume 11.” (R. A. Bryson, and F. K. Hare, Eds.), pp. 1–47. Elsevier, Amsterdam.Google Scholar
  5. Clark, J. S. (1989). Effects of long-term water balances on fire regime, north-western Minnesota. Journal of Ecology 77, 989–1004.CrossRefGoogle Scholar
  6. Fall, P. L., Davis, P. T., and Zielinski, G. A. (1995). Late Quaternary vegetation and climate of the Wind River Range, Wyoming. Quaternary Research 43, 393–404.CrossRefGoogle Scholar
  7. Giorgi, F., Whetton, P. H., Jones, R. G., Christensen, J. H., Mearns, L. O., Hewitson, B., vonStorch, H., Francisco, R., and Jack, C. (2001). Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophysical Research Letters 28, 3317–3320.CrossRefGoogle Scholar
  8. Gitay, H., Brown, S., Easterling, W., and Jallow, B. (2001). Ecosystems and their goods and services. In “Climate change 2001: Impacts, adaptation, and vulnerability.” (J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken, and K. S. White, Eds.), pp. 235–342. Cambridge University Press, Cambridge.Google Scholar
  9. Hostetler, S. W., Bartlein, P. J., Clark, P. U., Small, E. E., and Solomon, A. M. (2000). Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago. Nature 405, 334–337.CrossRefGoogle Scholar
  10. Huntley, B. (1995). How vegetation responds to climate change: Evidence from palaeovegetation studies. In “Impacts of climate change on ecosystems and species: Environmental context.” (J. C. Pernetta, R. Leemans, D. Elder, and S. Humphrey, Eds.), pp. 43–63. IUCN, Gland.Google Scholar
  11. Intergovernmental Panel on Climate Change (IPPC) (2001). “Climate change 2001: The scientific basis.” (J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds.). Cambridge University Press, Cambridge.Google Scholar
  12. Long, C. J., Whitlock, C., Bartlein, P. J., and Millspaugh, S. H. (1998). A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Canadian Journal of Forest Research 28, 774–787.CrossRefGoogle Scholar
  13. MacDonald, G. M., and Cwynar, L. C. (1985). A fossil pollen based reconstruction of the late Quaternary history of lodgepole pine (Pinus contorta ssp. latifolia) in the western interior of Canada. Canadian Journal of Forest Research 15, 1039–1044.CrossRefGoogle Scholar
  14. Meyer, G. M., Wells, S. G., and Jull, A. J. T. (1995). Fire and alluvial chronology in Yellowstone National Park: Climatic and intrinsic controls on Holocene geomorphic process. Geological Society of America Bulletin 107, 1211–1230.CrossRefGoogle Scholar
  15. Miller, D. A., and White, R. A. (1998). A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interactions 2, 1–26.CrossRefGoogle Scholar
  16. Millspaugh, S. H., and Whitlock, C. (2003). Postglacial fire, vegetation, and climate history of the Yellowstone-Lamar and Central Plateau provinces, Yellowstone National Park. In “After the fires: The ecology of change in Yellowstone National Park.” (L. Wallace, Ed.). Yale University Press, New Haven (in press).Google Scholar
  17. Millspaugh, S. H., Whitlock, C., and Bartlein, P. J. (2000). A 17,000-year history of fire for the Central Plateau of Yellowstone National Park. Geology 28, 211–214.CrossRefGoogle Scholar
  18. Mitchell, J. F. B., and Johns, T. C. (1997). On modification of global warming by sulfate aerosols. Journal of Climate 10, 245–267.CrossRefGoogle Scholar
  19. Mock, C. J., and Bartlein, P. J. (1995). Spatial variability of late-Quaternary paleoclimates in the western United States. Quaternary Research 44, 425–433.CrossRefGoogle Scholar
  20. Mock, C. J., and Brunelle-Daines, A. R. (1999). A modern analogue of western United States summer palaeoclimate at 6000 years before present. The Holocene 9, 541–545.CrossRefGoogle Scholar
  21. Mohr, J. A., Whitlock, C., and Skinner, C. N. (2000). Postglacial vegetation and fire history, eastern Klamath Mountains, California. The Holocene 10, 587–601.CrossRefGoogle Scholar
  22. Shafer, S. L., Bartlein, P. J., and Thompson, R. S. (2001). Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios. Ecosystems 4, 200–215.CrossRefGoogle Scholar
  23. Thompson, R. S., Anderson, K. H., and Bartlein, P. J. (1999). “Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America.” U.S. Geological Survey Professional Paper 1650 A & B.Google Scholar
  24. Webb, T., III (1995). Pollen records of late Quaternary vegetation change: Plant community rearrangements and evolutionary implications. In “Effects of past global change on life.” (National Research Council Commission on Geosciences, Environment, and Resources), pp. 221–232. National Academy Press, Washington, DC.Google Scholar
  25. Whitlock, C., and Bartlein, P. J. (1993). Spatial variations of Holocene climatic change in the Yellowstone region. Quaternary Research 39, 231–238.CrossRefGoogle Scholar
  26. Whitlock, C., Bartlein, P. J., and Van Norman, K. J. (1995). Stability of Holocene climate regimes in the Yellowstone region. Quaternary Research 43, 433–436.CrossRefGoogle Scholar
  27. Whitlock, C., and Millspaugh, S. H. (2001). A paleoecological perspective on past plant invasions in Yellowstone. Western North American Naturalist 61, 316–327.Google Scholar
  28. Whitlock, C., Shafer, S. L., and Marlon, J. (2003). The role of climate and vegetation change in shaping past and future fire regimes in the northwestern U.S. and the implications for ecosystem management. Forest Ecology and Management 178, 5–21.CrossRefGoogle Scholar
  29. World WeatherDisc Association (no date). “World WeatherDisc CD-Rom.” World WeatherDisc Associates, Inc., Seattle.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Sarah L. Shafer
    • 1
  • Patrick J. Bartlein
    • 2
  • Cathy Whitlock
    • 2
  1. 1.U.S. Geological SurveyCorvallisUSA
  2. 2.Department of GeographyUniversity of OregonEugeneUSA

Personalised recommendations