Advertisement

Runoff Processes in Mountain Headwater Catchments: Recent Understanding and Research Challenges

  • Alfred Becker
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

Runoff generation in mountain catchments is one of the most complex hydrological processes. It is highly variable in space and time, depending on the combination of three main controlling factors: (1) climate, (2) soil and geology, and (3) vegetation. The different combinations of these three factors determine the water balance of landscape units, including soil moisture dynamics, evapotranspiration and runoff generation. When assessing runoff generation, not only the runoff amounts need to be considered, but also the relative streamflow contributions of surface and subsurface runoff, which may differ considerably between areas (Buttle 1998). An overview of runoff mechanisms and components in different environments is given in Uhlenbrook and Leibundgut (1997) and Bonell (1998). The main focus of this paper is on subsurface stormflow, the least understood flow component.

Keywords

Distributed hydrological modeling Landscape patchiness Lateral flow components Response times Runoff generation Subsurface stormflow Travel times 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazemore, D. E., Eshleman, K. N., and Hollenbeck, K. J. (1994). The role of soil water in storm-flow generation in a forested headwater catchment: Synthesis of natural tracer and hydrometric evidence. Journal of Hydrology 162, 47–75.CrossRefGoogle Scholar
  2. Becker, A. (1989). Specific aspects of runoff formation. In “ Proceedings of the International Symposium on Headwater Control.” Prague, November 1989. Vol. I. Prague University, Prague.Google Scholar
  3. Becker, A., and McDonnell, J. J. (1998). Topographical end ecological controls of runoff generation and lateral flows in mountain catchments. In “ Hydrology, water resources and ecology in headwaters,” (K. Kovar, U. Tappeiner, N. E. Peters, and R. G. Craig, Eds.). Proceedings of the HeadWater ’98 Conference, Merano, April 1998. IAHS Publication 248, 199–206.Google Scholar
  4. Becker, A., and Braun, P. (1999). Disaggregation, aggregation and spatial scaling in hydrological modelling. Journal of Hydrology 217, 239–252.CrossRefGoogle Scholar
  5. Becker, A., Güntner, A., and Katzenmaier, D. (1999). Required integrated approach to understand runoff generation and flow-path dynamics in catchments. In “ Integrated methods in catchment hydrology,” (Ch. Leibundgut, J. J. McDonnell, and G. Schultz, Eds.). Proceedings of the International Symposium, Birmingham/UK, July 1999. IAHS Publication 258, 3–9.Google Scholar
  6. Becker, A., Klöcking, B., Lahmer, W., and Pfützner, B. (2002). The hydrological modelling system ARC/ EGMO. In “ Mathematical models of large watershed hydrology.” (V. P. Singh, and D. K. Frevert, Eds.), pp. 321–384. Water Resources Publications, Colorado/USA.Google Scholar
  7. Beven, K. J. (1989). Interflow. In “ Unsaturated flow in hydrological modelling.” (H. J. Morel-Seytoux, Ed.), pp. 191–216. Kluwer, Dordrecht.CrossRefGoogle Scholar
  8. Bonell, M. (1998). Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. Journal of the American Water Resource Association 34, 765–785.CrossRefGoogle Scholar
  9. Buttle, J. (1998). Fundamentals of watershed hydrology. In “ Isotope tracers in catchment hydrology.” C. Kendall, and J. J. McDonnell, Eds.), pp. 1–50. Elsevier, Amsterdam.CrossRefGoogle Scholar
  10. Burt, T. P., and Butcher, D. P. (1985). Topographic control of soil moisture distribution. Journal of Soil Science 36, 469–486.CrossRefGoogle Scholar
  11. Hewlett, J. D., and Hibbert, A. R. (1967). Factors affecting the response of small watersheds to precipitation in humid areas. In “ International symposium on forest hydrology,” (W. E. Sopper, and H. W. Lull, Eds.), pp. 271–275.Google Scholar
  12. Kendall, C, and McDonnell, J. J., Eds. (1998). Isotope tracers in catchment hydrology. Elsevier, Amsterdam.Google Scholar
  13. Kirnbauer, R., and Haas, P. (1998). Observations on runoff generation mechanisms in small Alpine catchments. In “ Hydrology, water resources and ecology in headwaters.” (K. Kovar, U. Tappeiner, N. E. Peters, and R. G. Craig, Eds.), Proceedings of the HeadWater ’98 Conference, Merano, April 1998. IAHS Publication 248, 239–247.Google Scholar
  14. Kunkel, R., and Wendland, F. (1999). Das Weg-Zeit-Verhalten des grundwasserbürtigen Abflussanteils im Flusseinzugsgebiet der Elbe. Schriften des FZ Jülich, „Umwelt“ Series, Vol. 19.Google Scholar
  15. Maidment, D. R., Ed. (1993). Handbook of hydrology. McGraw-Hill, New York.Google Scholar
  16. McDonnell, J. J., Freer, J., Hooper, R., Kendall, C, Burns, D., Beven, K., and Peters, N. (1996). New method developed for studying flow on hillslopes. EOS 77, 465–472.CrossRefGoogle Scholar
  17. McDonnell, J. J., Rowe, L., and Stewart, M. (1999). A combined tracer-hydromatic approach to assessing the effects of catchment scale on water flowpaths, source and age. IAHS Publication 258, 265–274.Google Scholar
  18. Sklash, M. G., and Farvolden, R. N. (1979). The role of groundwater in storm runoff. Journal of Hydrology 43, 45–65.CrossRefGoogle Scholar
  19. Tilch, N., Uhlenbrook, S., Didszun, J., Leibundgut, Ch., Zillgens, B., Kirnbauer, R., and Merz, B. (2003). Entschlüsselung von Abflussbildungsprozessen mit Hilfe tracerhydrologischer Ansätze in einem alpinen Einzugsgebiet. Österreichische Wasser- und Abfallwirtschaft 55, 1–9.Google Scholar
  20. Uhlenbrook, S., and Leibundgut, Ch. (1997). Abflussbildung bei Hochwasser in verschiedenen Raumskalen. Wasser&Boden 29, 13–22.Google Scholar
  21. Uhlenbrook, S., and Leibundgut, Ch. (1999). Integration of tracer information into the development of a rainfall-runoff model. In “ Integrated methods in catchment hydrology,” (Ch. Leibundgut, J. J. McDonnell, and G. Schultz, Eds.). Proceedings of the International Symposium, Birmingham/UK, July 1999. IAHS Publication 258, 93–100.Google Scholar
  22. Uhlenbrook, S., Frey, M., Leibundgut, Ch., and Maloszewski, P. (2002). Residence time based hydrograph separations in a meso-scale mountainous basin at event and seasonal time scales. Water Resources Research 38, 1–14.CrossRefGoogle Scholar
  23. Uhlenbrook, S., and Leibundgut, Ch. (2002). Process-oriented catchment modelling and multiple-response validation. Hydrological Processes 16, 423–440.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Alfred Becker
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations