Advertisement

Spatial Heterogeneity of Snow Conditions and Evapotranspiration in the Swiss Alps

  • Lucas Menzel
  • Herbert Lang
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

In most alpine regions, the presence of snow controls the hydro-climatic situation over a great part of the year. The delayed and long-lasting process of snowmelt guarantees a relatively well-balanced discharge regime of rivers in the spring and summer melting season, even if only a small part of their catchment includes high mountain areas. For the typical alpine weather conditions, this results in high melt water runoff during dry conditions when net radiation and air temperature are high, while, during cooler periods, rainfall compensates for reduced or discontinued melt rates and sustains streamflow at a balanced level. Furthermore, because of the relatively high albedo of snow, changes in alpine snowcover are associated with a feedback to climate, a process that has not yet been very well investigated. For example, a climate-induced decrease in snowcover will reduce surface albedo, which leads to an amplification of the initial warming.

Keywords

Climate change Evapotranspiration Snowcover Spatially distributed modelling Swiss Alps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernath, A. (1991). “Zum Wasserhaushalt im Einzugsgebiet der Rhône bis Gletsch.” Zürcher Geographische Schriften 43. Department of Geography ETH, Zurich.Google Scholar
  2. Gurtz, J., Baltensweiler, A., Lang, H., Menzel, L., and Schulla, J. (1997). “Auswirkungen von klimatischen Variationen auf Wasserhaushalt und Abfluss im Flussgebiet des Rheins.” Schlussbericht NFP 31. Vdf Hochschulverlag, Zurich.Google Scholar
  3. Haeberli, W., and Beniston, M. (1998). Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27, 258–265.Google Scholar
  4. Hennemuth, B., and Köhler, U. (1984). Estimation of the energy balance of the Dischma Valley. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 34, 97–119.Google Scholar
  5. Intergovernmental Panel on Climate Change (IPCC) (2001). “Climate Change 2001: The scientific basis” (J. T. Houghton et al., Eds.). Third assessment report of the IPCC, Cambridge.Google Scholar
  6. Konzelmann, T., Calanca, P., Müller, G., Menzel, L., and Lang, H. (1997). Energy balance and evapotranspiration in a high mountain area during summer. Journal of Applied Meteorology 36, 966–973.CrossRefGoogle Scholar
  7. Menzel, L. (1997). “Modellierung der Evapotranspiration im System Boden-Pflanze-Atmosphäre.” Zürcher Geographische Schriften 67. Department of Geography ETH, Zurich.Google Scholar
  8. Menzel, L., and Lang, H. (1998). Spatial variation in evapotranspiration in Swiss Alpine regions. In “Hydrology, water resources and ecology in headwaters.” (K. Kovar, U. Tappeiner, N. E. Peters, and R. G. Craig, Eds.), pp. 115–121. IAHS Publication 248, Wallingford.Google Scholar
  9. Menzel, L., Lang, H., and Rohmann, M. (1999). Mean annual actual evaporation. In “Hydrological atlas of Switzerland.” (Landeshydrologie und -geologie, Ed.), Chapter 4. Geographical Institute of the University Bern, Bern.Google Scholar
  10. Monteith, J. L. (1965). Evaporation and environment. In “Proceedings of the 19th Symposium of the Society for Experimental Biology,” Cambridge.Google Scholar
  11. Organe consultatif sur les changements climatiques (OCCC) (2002). “Das Klima ändert — auch in der Schweiz. Die wichtigsten Ergebnisse des dritten Wissensstandberichts des IPCC aus Sicht der Schweiz.” OCCC, Bern.Google Scholar
  12. Parry, M. L., Ed. (2000). “Assessment of potential effects and adaptations for climate change in Europe: The Europe ACACIA project.” University of East Anglia, Norwich.Google Scholar
  13. Plüss, Ch. (1997). “The energy balance over an alpine snowcover.” Zürcher Geographische Schriften 65. Department of Geography ETH, Zurich.Google Scholar
  14. Schulla, J. (1997). “Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen von Klimaänderungen.” Zürcher Geographische Schriften 69. Department of Geography ETH, Zürich.Google Scholar
  15. Zierl, B. (2001). A water balance model to simulate drought in forested ecosystems and its application to the entire forested area in Switzerland. Journal of Hydrology 242, 115–136.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Lucas Menzel
    • 1
  • Herbert Lang
    • 2
  1. 1.Potsdam-Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.Institute for Atmospheric and Climate ScienceSwiss Federal Institute of Technology (ETH)ZürichSwitzerland

Personalised recommendations