Orographic Precipitation and Climate Change

  • Christoph Schär
  • Christoph Frei
Part of the Advances in Global Change Research book series (AGLO, volume 23)


More than half of the accessible freshwater is used directly or indirectly by humankind, and much of this precious resource has its origin in mountainous regions, ultimately in the form of orographic precipitation. In many areas, mountains function as “water towers” for the surrounding regions. Melt from snow cover and glaciers represents an important contribution to runoff in the surrounding areas, especially during seasons when precipitation is sparse or completely absent. Mountain freshwater resources are heavily utilized for agricultural purposes (e.g. irrigation) and for the generation of hydropower, thus being of great socio-economic importance. Yet, heavy orographic precipitation events also represent a potential hazard, as they may lead to floods, avalanches and mudslides that often cause countless loss of life and tremendous damage. The potential consequences of such events may be extreme. For instance, a single catastrophic mudslide event that took place in Venezuela on December 15, 1999, is estimated to have caused more than 20,000 casualties according to re-insurance estimates.


Climate change Climate models Extreme events Precipitation Runoff Scenarios 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M., and Ingram, W. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232.CrossRefGoogle Scholar
  2. Boer, G. J. (1993). Climate change and the regulation of the surface moisture and energy budgets. Climate Dynamics 8, 225–239.CrossRefGoogle Scholar
  3. Bougeault, P., Binder, P., Buzzi, A., Dirks, R., Houze, R., Kuettner, J., Smith, R. B., Steinacker, R., and Volkert, H. (2001). The MAP special observing period. Bulletin of the American Meteorological Society 82, 433–462.CrossRefGoogle Scholar
  4. Brunetti, M., Maugeri, M., and Nanni, T. (2001). Changes in total precipitation, rainy days and extreme events in northeastern Italy. International journal of Climatology 21, 861–871.CrossRefGoogle Scholar
  5. Christensen, J. H., Machenhauer, B., Jones, R. G., Schär, C., Ruti, P. M., Castro, M, and Visconti, G. (1996). Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Climate Dynamics 13, 489–506.CrossRefGoogle Scholar
  6. Dai, A., Fung, I. Y., and DelGenio, A. D. (1997). Surface observed global land precipitation variations during 1900–88. Journal of Climate 10, 2943–2962.CrossRefGoogle Scholar
  7. DelGenio, A. D., Lacis, A. A., and Ruedy, R. A. (1991). Simulations of the effect of a warmer climate on atmospheric humidity. Nature 251, 382–385.Google Scholar
  8. Durman, C. F., Gregory, J. M., Hassell, D. C., Jones, R. G., and Murphy, J. M. (2001). A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Quaterly Journal of the Royal Meteorological Society 127, 1005–1015.CrossRefGoogle Scholar
  9. Frei, C., and Schär, C. (1998). A precipitation climatology of the Alps from high-resolution rain-gauge observations. International Journal of Climatology 18, 873–900.CrossRefGoogle Scholar
  10. Frei, C., Schär, C., Liithi, D., and Davies, H. C. (1998). Heavy precipitation processes in a warmer climate. Geophysical Research Letters 25, 1431–1434.CrossRefGoogle Scholar
  11. Frei, C., and Schär, C. (2001). Detection probability of trends in rare events: Theory and application to heavy precipitation in the Alpine region. Journal of Climate 14, 1564–1584.CrossRefGoogle Scholar
  12. Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., and Vidale, R L. (2003). Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. Journal of Geophysical Research-Atmospheres 108 (D3), art. no. 4124.Google Scholar
  13. Gibson, J. K., Kallberg, R, Uppala, S., Nomura, A., Hernandez, A., and Serrano, A. (1997). “ERA description.” ECMWF Re-Analysis Project Report Series, European Center for Medium-Range Weather Forecast, Reading.Google Scholar
  14. Giorgi, F., and Mearns, L. O. (1991). Approaches to the simulation of regional climate change: A review. Reviews in Geophysics 29, 191–216.CrossRefGoogle Scholar
  15. Giorgi, F., Whetton, P. H., Jones, R. G., Christensen, J. H., Mearns, L. O., Hewitson, B., vonStorch, H., Francisco, R., and Jack, C. (2001). Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophysical Research Letters 28, 3317–3320.CrossRefGoogle Scholar
  16. Groisman, R Y., Knight, R. W., and Karl, T. R. (2001). Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bulletin of the American Meteorological Society 82, 219–246.CrossRefGoogle Scholar
  17. Hanssen-Bauer, I. and Forland, E. J. (2000). Temperature and precipitation variations in Norway 1900–1994 and their links to atmospheric circulation. International Journal of Climatology 20, 1693–1708.CrossRefGoogle Scholar
  18. Hartmann, D. L. (1994). “Global physical climatology.” Academic Press, San Diego.Google Scholar
  19. Hennessy, K. J., Gregory, J. M., and Mitchell, J. F. B. (1997). Changes in daily precipitation under enhanced greenhouse conditions. Climate Dynamics 13, 667–680.CrossRefGoogle Scholar
  20. Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B., and Schneider, U. (1997). The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bulletin of the American Meteorological Society 78, 5–20.CrossRefGoogle Scholar
  21. Hulme, M. (1994). The cost of climate data: A European experience. Weather 49, 168–174.CrossRefGoogle Scholar
  22. Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: Regional temperature and precipitation. Science 269, 676–679.CrossRefGoogle Scholar
  23. IPCC (2001). In “Climate change 2001: The scientific basis.” (J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds.). Cambridge University Press, Cambridge (available from Scholar
  24. Jones, R. G., Murphy, J. M., and Noguer, M. (1995). Simulation of climate change over Europe using a nested regional climate model. Part I: Assessment of control climate including sensitivity to location of lateral boundaries. Quaterly Journal of the Royal Meteorological Society 121, 1413–1449.Google Scholar
  25. Karl, T. R., and Knight, R. W. (1998). Secular trends of precipitation amount, frequency and intensity in the United States. Bulletin of the American Meteorological Society 19, 231–241.CrossRefGoogle Scholar
  26. Karl, T. R., Derr, V E., Easterling, D. R., Folland, C. K., Hofmann, D. J., Levitus, S., Nicholls, N., Parker, D. E., and Withee, G. W. (1995). Critical issues for long-term climate monitoring. Climatic Change 31, 185–221.CrossRefGoogle Scholar
  27. Kharin, V. V., and Zwiers, F. W. (2000). Changes in the extremes in an ensemble of transient climate simulations with a coupled atmophere-ocean GCM. Journal of Climate 13, 3760–3788.CrossRefGoogle Scholar
  28. Kleinn, J., Frei, C., Gurtz, J., Vidale, P. L., and Schär, C. (2002). Coupled climate-runoff simulations: A process study of current and warmer climate conditions in the Rhine basin. In “16th Conference on Hydrology,” January 2002, American Meteorological Society (extended abstract).Google Scholar
  29. Lettenmaier, D. P., Wood, E. F., and Wallis, J. R. (1994). Hydro-climatological trends in the continental United States, 1948–88. Journal of Climate 7, 586–607.CrossRefGoogle Scholar
  30. Leung, L. R., and Ghan, S. J. (1999). Pacific Northwest climate sensitivity simulated by a regional climate model driven by a GCM. Part I and II. Journal of Climate 12, 2010–2053CrossRefGoogle Scholar
  31. Massacand, A. C., Wernli, H., and Davies, H. C. (1998). Heavy precipitation on the Alpine southside: An upper-level precursor. Geophysical Research Letters 25, 1435–1438.CrossRefGoogle Scholar
  32. McGuffie, K., Henderson-Sellers, A., Holbrook, N., Kothavala, Z., Balachova, O., and Hoekstra, J. (1999). Assessing simulations of daily temperature and precipitation variability with global climate models for present and enhanced greenhouse climates. International Journal of Climatology 19, 1–26.CrossRefGoogle Scholar
  33. New, M., Lister, D., Hulme, M., and Makin, I. (2002). A high-resolution data set of surface climate over global land areas. Climate Research 21, 1–25.CrossRefGoogle Scholar
  34. Palmer, T. N. (2000). Predicting uncertainty in forecasts of weather and climate. Reports on Progress in Physics 63, 71–116.CrossRefGoogle Scholar
  35. Palmer, T. N., and Räisänen, J. (2002). Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415, 512–514.CrossRefGoogle Scholar
  36. Peterson, T. C. et al. (1998). Homogeniety adjustments of in situ atmospheric climate data: A review. International Journal of Climatology 18, 1493–1517.CrossRefGoogle Scholar
  37. Rabier, E., Jarvinen, H., Klinker, E., Mahfouf, J. F., and Simmons, A. J. (2000). The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quaterly Journal of the Royal Meteorological Society 126, 1143–1170.CrossRefGoogle Scholar
  38. Schmidli, J., Frei, C., and Schär, C. (2001). Reconstruction of mesoscale precipitationfields from sparse observations in complex terrain. Journal of Climate 14, 3289–3306.CrossRefGoogle Scholar
  39. Schmidli, J., Schmutz, C., Frei, C., Wanner, H., and Schär, C. (2002). Mesoscale precipitation in the Alps during the 20th century. International Journal of Climatology 22, 1049–1074.CrossRefGoogle Scholar
  40. Schmith, T. (2000). Global warming signature in observed winter precipitation in Northwestern Europe. Climate Research 17, 263–274.CrossRefGoogle Scholar
  41. Schmutz, C. (2003). A quality-tested data base of monthly Alpine long-term (1901–1995) precipitation time series. Theoretical and Applied Climatology (in press).Google Scholar
  42. Semenov, V. A., and Bengtsson, L. (2002). Secular trend in daily precipitation characteristics: Greenhouse gas simulations with a coupled AOGCM. Climate Dynamics 19, 123–140.CrossRefGoogle Scholar
  43. Simmons, A. J., and Hollingsworth, A. (2002). Some aspects of the improvement in skill of numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 128, 647–677.CrossRefGoogle Scholar
  44. Stafford, J. M., Wendler, G., and Curtis, J. (2000). Temperature and precipitation of Alaska: 50 year trend analysis. Theoretical and Applied Climatology 67, 33–44.CrossRefGoogle Scholar
  45. Stockdale, T. N., Anderson, D. L. T., Alves, J. O. S., and Balmaseda, M. A. (1998). Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature 392, 370–373.CrossRefGoogle Scholar
  46. Sun, B., Groisman, P. Y., and Makhov, I. I. (2001). Recent changes in cloud-type frequency and inferred increases in convection over the United States and the Former Soviet Union. Journal of Climate 14, 1864–1880.CrossRefGoogle Scholar
  47. Trenberth, K. E. (1999). Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change 42, 327–339.CrossRefGoogle Scholar
  48. Vidale, P. L., Liithi, D., Frei, C., Seneviratne, S., and Schär, C. (2003). Predictability and uncertainty in a regional climate model. Journal of Geophysical Research — Atmospheres (in press).Google Scholar
  49. Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson, D. B., and Xoplaki, E. (2001). North Atlantic Oscillation: Concepts and studies. Surveys in Geophysics 22, 321–382.CrossRefGoogle Scholar
  50. Weatherald, R. T., and Manabe, S. (1995). The mechanisms of summer dryness induced by greenhouse wanning. Journal of Climate 8, 3096–3108.CrossRefGoogle Scholar
  51. Wilby, R. L., and Wigley, T. M. L. (1997). Downscaling general circulation model output: A review of methods and limitations. Progresses in Physical Geography 21, 530–548.CrossRefGoogle Scholar
  52. Wild, M., Ohmura, A., Gilgen, H., Morcrette, J. J., and Slingo, A. (2001). Evaluation of downward longwave radiation in general circulation models. Journal of Climate 14, 3227–3239.CrossRefGoogle Scholar
  53. Yang, D. Q., Elomaa, E., Tuominen, A., Aaltonen, A., Goodison, B., Gunther, T., Golubev, V., Sevruk, B., Madsen, H., and Milkovic, J. (1999). Wind-induced precipitation undercatch of the Hellmann gauges. Nordic Hydrology 30, 57–80.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Christoph Schär
    • 1
  • Christoph Frei
    • 1
  1. 1.Institute for Atmospheric and Climate Science, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland

Personalised recommendations