Glacier and Permafrost Hazards in High Mountains

  • Andreas Kääb
  • John M. Reynolds
  • Wilfried Haeberli
Part of the Advances in Global Change Research book series (AGLO, volume 23)


Glacier- and permafrost-related hazards represent a continuous threat to human lives and infrastructure in high mountain regions. Related disasters can kill hundreds or even thousands of people at once and cause damage with a global sum on the order of 108 Euro annually. Glacier and permafrost hazards in high mountains include:
  • outbursts of glacier lakes, causing floods and debris flows;

  • ice break-offs and subsequent ice avalanches from steep glaciers;

  • stable and unstable glacier length variations;

  • destabilisation of frozen or unfrozen debris slopes;

  • destabilisation of rock walls; and

  • combinations or chain reactions of these processes.


Climate change Debris flow Flood Glacier Ice avalanche Permafrost 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alean, J. C. (1985). Ice avalanches: Some empirical information about their formation and reach. Journal of Glaciology 31, 324–333.Google Scholar
  2. Bruce, R., Cabrera, G. A., Leiva, J. C., and Lenzano, L. E. (1987). The 1985 surge and ice dam of Glaciar Grande del Nevado del Plomo, Argentina. Journal of Glaciology 33, 131–132.Google Scholar
  3. Davies, M. C. R., Hanza, O., and Harris, C. (2001). The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafrost and Periglacial Processes 12, 137–144.CrossRefGoogle Scholar
  4. Giani, G. R, Silvano, S., and Zanon, G. (2001). Avalanche of 18 January 1997 on Brenva glacier, Mont Blanc Group, Western Italian Alps: An unusual process of formation. Annals of Glaciology 32, 333–338.CrossRefGoogle Scholar
  5. Grove, J. M. (1987). Glacier fluctuations and hazards. Geographical Journal 153, 351–369.CrossRefGoogle Scholar
  6. Haeberli, W. (1983). Frequency and characteristics of glacier floods in the Swiss Alps. Annals of Glaciology 4, 85–90.Google Scholar
  7. Haeberli, W., and Beniston, M. (1998). Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27, 258–265.Google Scholar
  8. Haeberli, W., Wegmann, M., and Vonder Mühll, D. (1997). Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps. Eclogae Geologicae Helvetiae 90, 407–414.Google Scholar
  9. Haeberli, W., Kääb, A., Vonder Mühll, D., and Teysseire, P. (2001). Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps. Journal of Glaciology 47, 111–122.CrossRefGoogle Scholar
  10. Haeberli, W, Kääb, A., Paul, F., Chiarle, M., Mortara, G., Mazza, A., Deline, P., and Richardson, S. (2002). A surge-type movement at Ghiacciaio del Belvedere and a developing slope instability in the east face of Monte Rosa, Macugnaga, Italian Alps. Norwegian Journal of Geography 56, 104–111.Google Scholar
  11. Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal 39, 316–330.CrossRefGoogle Scholar
  12. Kääb, A. (2000). Photogrammetry for early recognition of high mountain hazards: New techniques and applications. Physics and Chemistry of the Earth, Part B 25, 765–770.CrossRefGoogle Scholar
  13. Kääb, A. (2002). Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and Remote Sensing 57, 39–52.CrossRefGoogle Scholar
  14. Kääb, A., Paul, F., Maisch, M., Hölzle, M., and Haeberli, W. (2002). The new remote-sensing-derived Swiss glacier inventory: II. First results. Annals of Glaciology 34, 362–366.CrossRefGoogle Scholar
  15. Kääb, A., Wessels, R., Haeberli, W., Huggel, C., Kargel, J. S., and Khalsa, S. J. S. (2003). Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters. EOS Transactions, American Geophysical Union 84, 117, 121.Google Scholar
  16. Pant, S. R., and Reynolds, J. M. (2000). Application of electrical imaging techniques for the investigation of natural dams: An example from Thulagi Glacier Lake, Nepal. Journal of Nepal Geological Society 22, 211–218.Google Scholar
  17. Plafker, G., Ericksen, G. E., and Fernandez, J. (1971). Geological aspects of the May 31, 1970, Peru earthquake. Bulletin of the Seismological Society of America 1, 543–578.Google Scholar
  18. Reynolds, J. M. (1997). “An introduction to applied and environmental geophysics.” John Wiley & Sons, London.Google Scholar
  19. Reynolds, J. M., Dolecki, A., and Portocarrero, C. (1998). The construction of a drainage tunnel as part of glacial lake hazard mitigation at Hualcán, Peru. In “Geohazards in engineering geology.” (J. G. Maund, and M. Eddleston, Eds.), Geological Society, London, Engineering Geology Special Publications 15, 41–48.Google Scholar
  20. Richardson, S. D., and Reynolds, J. M. (2000a). An overview of glacial hazards in the Himalayas. Quaternary International 65/66, 31–47.CrossRefGoogle Scholar
  21. Richardson, S. D., and Reynolds, J. M. (2000b). Degradation of ice-cored moraine dams: Implications for hazard development. Debris Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publication 264, 187–197.Google Scholar
  22. Zimmermann, M., and Haeberli, W. (1992). Climatic change and debris flow activity in high mountain areas: A case study in the Swiss Alps. Catena Supplement 22, 59–72.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Andreas Kääb
    • 1
  • John M. Reynolds
    • 2
  • Wilfried Haeberli
    • 1
  1. 1.Department of GeographyUniversity of Zurich-IrchelZurichSwitzerland
  2. 2.Reynolds Geo-Sciences LtdNercwys, Mold, UK-FlintshireUK

Personalised recommendations