Mountain Glaciers in Global Climate-related Observing Systems

  • Wilfried Haeberli
Part of the Advances in Global Change Research book series (AGLO, volume 23)


Fluctuations of glaciers and ice caps in cold mountain areas have been systematically observed for more than a century in various parts of the world and are considered to be highly reliable indications of worldwide warming trends (cf. Fig. 2.39a in IPCC 2001). Mountain glaciers and ice caps are, therefore, key variables for early-detection strategies in global climate-related observations. Advanced monitoring strategies integrate detailed observations of mass and energy balance at selected reference glaciers with more widely distributed determinations of changes in area, volume and length; repeated compilation of glacier inventories enables global representativity to be reached (IAHS(ICSI)/UNEP/UNESCO 1989; 1998; 2001; cf. Haeberli et al. 2000; 2002).


Atmospheric warming Climate change Environment Glaciers Monitoring Mountains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendt, A., Echelmeyer, K., Harrison, W. D., Lingle, G., and Valentine, V. (2002). Rapid wastage of Alaska Glaciers and their contribution to rising sea level. Science 297, 382–386.CrossRefGoogle Scholar
  2. Beniston, M., Haeberli, W., Hölzle, M., and Taylor, A. (1997). On the potential use of glacier and permafrost observations for verification of climate models. Annals of Glaciology 25, 400–406.Google Scholar
  3. Cogley, J. G., and Adams, W. P. (1998). Mass balance of glaciers other than the ice sheets. Journal of Glaciology 44, 315–325.Google Scholar
  4. Dyurgerov, M. B., and Meier, M. F. (1997). Year-to-year fluctuations of global mass balance of small glaciers and their contribution to sea level. Arctic and Alpine Research 29, 392–402.CrossRefGoogle Scholar
  5. Forel, F.-A. (1895). Les variations périodiques des glaciers. Discours préliminairc. Archives des Sciences physiques et naturelles, Genève, XXXIV, 209 – 229.Google Scholar
  6. Haeberli, W., and Hölzle, M. (1995). Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology 21, 206–212. Russian translation in „Data of Glaciological Studies 82.“ pp. 116–124. Moscow.Google Scholar
  7. Haeberli, W., Hölzle, M., and Suter, S., Eds. (1998). Into the second century of worldwide glacier monitoring: Prospects and strategies. A contribution to the International Hydrological Programme (IHP) and the Global Environment Monitoring System (GEMS). UNESCO — Studies and Reports in Hydrology 56.Google Scholar
  8. Haeberli, W., Frauenfelder, R., Hölzle, M., and Maisch, M. (1999). On rates and acceleration trends of global glacier mass changes. Geografiska Annaler 81A, 585–591.CrossRefGoogle Scholar
  9. Haeberli, W., Barry, R., and Cihlar, J. (2000). Glacier monitoring within the Global Climate Observing System. Annals of Glaciology 31, 241–246.CrossRefGoogle Scholar
  10. Haeberli, W., Maisch, M., and Paul, F. (2002). Mountain glaciers in global glimate-related observation networks. WMO Bulletin 51, 18–25.Google Scholar
  11. Hölzle, M., Haeberli, W., Dischl, M., and Peschke, W. (2003). Secular glacier mass balances derived from cumulative glacier length changes. Global and Planetary Change 36, 77–89.Google Scholar
  12. IAHS (ICS)/UNEP/UNESCO (1989). „World Glacier Inventory — Status 1988.“ (W. Haeberli, H. Bösch, K. Scherler, G. Ostrem, and C. C. Wallén, Eds.), Nairobi.Google Scholar
  13. IAHS (ICSiyUNEP/UNESCO (1998). “Fluctuations of glaciers 1990–95.” (W. Haeberli, M. Hölzle, S. Suter, and R. Frauenfelder, Eds.). World Glacier Monitoring Service, University and ETH Zurich.Google Scholar
  14. IAHS(ICSI)/UNEP/UNESCO (2001). „Glacier mass balance bulletin no. 6.“ (Haeberli, W., Frauenfelder, R., and Hölzle, M., Eds.). World Glacier Monitoring Service, University and ETH Zurich.Google Scholar
  15. IPCC (2001). Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University.Google Scholar
  16. Kääb, A., Paul, F., Maisch, M., Hölzle, M., and Haeberli, W. (2002). The new remote-sensing-derived Swiss glacier inventory: II. First results. Annals of Glaciology 34, 362–366.CrossRefGoogle Scholar
  17. Kieffer, H., Kargel, J. S., Barry, R., Bindschadler, R., Bishop, M., MacKinnon, D., Ohmura, A., Raup, B., Antoninetti, M., Bamber, J., Braun, M., Brown, I., Cohen, D., Copland, E., DueHagen, J., Engeset, R. V., Fitzharris, B., Fujita, K., Haeberli, W., Hagen, J. O., Hall, D., Hölzle, M., Johansson, M., Kääb, A., Koenig, M., Konovalov, V., Maisch, M., Paul, F., Rau, F., Reeh, N., Rignot, E., Rivera, A., de Ruyter de Wildt, M., Scambos, T., Schaper, J., Scharfen, G., Shroder, J., Solomina, O., Thompson, D. van der Veen, K., Wohlleben, T., and Young, N. (2000). New eyes in the sky measure glaciers and ice sheets. In „EOS, Transactions, American Geophysical Union, 81/24,“ June 13, 265, 270–271.Google Scholar
  18. Letréguilly, A., and Reynaud, L. (1990). Space and time distribution of glacier mass balance in the northern hemisphere. Arctiv and Alpine Research 22, 43–50.CrossRefGoogle Scholar
  19. Meier, M. F., and Bahr, D. B. (1996). Counting glaciers: Use of scaling methods to estimate the number and size distribution of the glaciers on the world. In „Glaciers, ice sheets and volcanoes: A tribute to Mark F. Meier.“ (S. C. Colbeck, Ed.), pp. 1–120, CRREL Special Report 27.Google Scholar
  20. Oerlemans, J. (2001). „Glaciers and climate change.“ Balkema Publishers, Rotterdam.Google Scholar
  21. Oerlemans, J., Anderson, B., Hubbard, A., Huybrechts, P., Johannesson, T., Knap, W. H., Schmeits, M., Stroeven, A. P., van de Wal, R. S. W., Wallinga, J., and Zuo, Z. (1998). Modelling the response of glaciers to climate warming. Climate Dynamics 14, 261–214.CrossRefGoogle Scholar
  22. Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W. (2002). The new remote sensing-derived Swiss Glacier Inventory: I. Methods. Annals of Glaciology? 34, 355–361.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Wilfried Haeberli
    • 1
  1. 1.World Glacier Monitoring Service, Glaciology and Geomorphodynamics Group, Geography DepartmentUniversity of ZurichZurichSwitzerland

Personalised recommendations