Long-term Responses of Mountain Ecosystems to Environmental Changes: Resilience, Adjustment, and Vulnerability

  • Willy Tinner
  • Brigitta Ammann
Part of the Advances in Global Change Research book series (AGLO, volume 23)


The steep environmental gradients of mountain ecosystems over short distances reflect large gradients of several climatic parameters and hence provide excellent possibilities for ecological research on the effects of environmental change. To gain a better understanding of the dynamics of abiotic and biotic parameters of mountain ecosystems, long-term records are required since permanent plots in mountain regions cover in the best case about 50–70 years. In order to extend investigations of ecological dynamics beyond these temporal limitations of permanent plots, paleoecological approaches can be used if the sampling resolution can be adapted to ecological research questions, e.g. a sample every 10 years. Paleoecological studies in mountain ecosystems can provide new ecological insights through the combination of different spatial and temporal scales. If we thus improve our understanding of processes across both steep environmental gradients and different time scales, we may be able to better estimate ecosystem responses to current and future environmental change (Ammann et al. 1993; Lotter et al. 1997).


Alps Climate change Human impact Fire history Paleoecology Vegetation history 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J. D., and Melillo, J. M. (1991). “Terrestrial Ecosystems.” Saunders College Publishing, Philadelphia.Google Scholar
  2. Ammann, B. (1988). Palynological evidence of prehistoric anthropogenic forest changes on the Swiss Plateau. In “The cultural landscape: Past, present and future.” (H. H. Birks, H. J. B. Birks, P. E. Kaland, and D. Moe, Eds.), pp. 289–299. Cambridge University Press, Cambridge.Google Scholar
  3. Ammann, B. (1989). Late-Quaternary palynology at Lobsigensee. Regional vegetation history and local lake development. Dissertationes Botanicae 137, 1–157.Google Scholar
  4. Ammann, B., Birks, H. J. B., Drescher-Schneider, R., Juggins, S., Lang, G., and Lotter, A. F. (1993). Patterns of variation in late-glacial pollen stratigraphy along a North-West — South-East transect through Switzerland: A numerical analysis. Quaternary Science Reviews 12, 277–286.CrossRefGoogle Scholar
  5. Ammann, B., Eicher, U., Gaillard, M.-J., Haeberli, W., Lister, G., Lotter, A. F., Maisch, M., Niessen, F., Schlüchter, C., and Wohlfarth, B. (1994). The Würmian Late-glacial in lowland Switzerland. Journal of Quaternary Science 9, 119–125.CrossRefGoogle Scholar
  6. Ammann, B., Birks, H. J. B., Brooks, S. J., Eicher, U., von Grafenstein, U., Hofmann, W., Lemdahl, G., Schwander, J., Tobolski, K., and Wick, L. (2000). Quantification of biotic responses to rapid climatic changes around the Younger Dryas: A synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 313–347.CrossRefGoogle Scholar
  7. Bennett, K. D. (1983). Postglacial population expansion of forest trees in Norfolk, UK. Nature 303, 164–167.CrossRefGoogle Scholar
  8. Bugmann, H., and Pfister, C. (2000). Impacts of interannual climate variability on past and future forest composition. Regional Environmental Change 1, 112–125.CrossRefGoogle Scholar
  9. Burga, C. A., and Perret, R. (1998). “Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter.” Ott Verlag, Thun.Google Scholar
  10. Caldararo, N. (2002). Human ecological intervention and the role of forest fires in human ecology. Science of the Total Environment 292, 141–165.CrossRefGoogle Scholar
  11. Carraro, G., Klötzli, F., Walther, G.-R., Gianoni, P., and Mossi, R. (1999). “Observed changes in vegetation in relation to climate warming.” vdf, Hochschulverlag AG ETH Zürich, Zürich.Google Scholar
  12. Clark, J. S., Merkt, J., and Müller, H. (1989). Post-glacial fire, vegetation, and human history on the northern alpine forelands, south-western Germany. Journal of Ecology 77, 897–925.CrossRefGoogle Scholar
  13. Conedera, M., Marcozzi, M., Jud, B., Mandallaz, D., Chatelain, F., Frank, C., Kienast, F., Ambrosetti, P., and Corti, G. (1996). “Incendi boschivi al Sud delle Alpi: Passato, presente e possibili sviluppi futuri.” vdf, Hochschulverlag ETH Zürich, Zürich.Google Scholar
  14. Ellenberg, H. (1996). “Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht.” Ulmer, Stuttgart.Google Scholar
  15. Gobet, E., Tinner, W., Hubschmid, P., Jansen, I., Wehrli, M., Ammann, B., and Wick, L. (2000). Influence of human impact and bedrock differences on the vegetational history of the Insubrian Southern Alps. Vegetation History and Archaeobotany 9, 175–178.CrossRefGoogle Scholar
  16. Haas, J. N. (1996). Pollen and plant macrofossil evidence of vegetation change at Wallisellen-Langachemoos (Switzerland) during the Mesolithic-Neolithic transition 8500 to 6500 years ago. Dissertationes Botanicae 267, 1–67.Google Scholar
  17. Hein, O. (2001). “Holocene palaeolimnology of Swiss mountain lakes reconstructed using subfossil chironomid remains: Past climate and prehistoric human impact on lake ecosystems.” Unpublished PhD thesis, University of Bern, Bern.Google Scholar
  18. Kaltenrieder, P. (1999). “Lokale Vegetationsgeschichte und Holozäne Schwankungen der oberen Waldgrenze: Eine makrorestanalytische Untersuchung am Gouillé Rion (2343 m, VS).” Unpublished Master thesis, University of Bern, Bern.Google Scholar
  19. Keller, F., Lischke, H., Mathis, T., Mohl, A., Wick, L., Ammann, B., and Kienast, F. (2002). Effects of climate, fire, and humans on forest dynamics: Forest simulations compared to the palaeological record. Ecological Modelling 152, 109–127.CrossRefGoogle Scholar
  20. Klötzli, F., Walther, G.-R., Carraro, G., and Grundmann, A. (1996). Anlaufender Biomwandel in Insubrien. Verhandlungen der Gesellschaft für Ökologie 26, 537–550.Google Scholar
  21. Küster, H. (1994). The economic use of Abies wood as timber in central Europe during Roman times. Vegetation History and Archaeobotany 3, 25–32.CrossRefGoogle Scholar
  22. Kiittel, M. (1990). Der subalpine Schutzwald im Urserental: Ein inelastisches Ökosystem. Botanica Helvetica 100, 183–197.Google Scholar
  23. Lang, G., and Tobolski, K. (1985). Hobschensee: Late-Glacial and Holocene environment of a lake near the timberline. Dissertationes Botanicae 87, 209–228.Google Scholar
  24. Lotter, A. F., Birks, H. J. B., Hofmann, W., and Marchetto, A. (1997). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18, 395–420.CrossRefGoogle Scholar
  25. Markgraf, V. (1969). Moorkundliche und vegetationsgeschichtliche Untersuchungen an einem Moorsee an der Waldgrenze im Wallis. Botanische Jahrbücher 89, 1–63.Google Scholar
  26. Ravazzi, C. (2002). Late Quaternary history of spruce in southern Europe. Review of Paleobotany and Palynology 120, 131–177.CrossRefGoogle Scholar
  27. Richoz, I. (1998). Etude paléoécologique du lac de Seedorf (Fribourg, Suisse). Histoire de la végétation et du milieu durant l’Holocène: le rôle de l’homme et du climat. Dissertationes Botanicae 293, 1–177.Google Scholar
  28. Tinner, W., Ammann, B., and Germann, P. (1996). Treeline fluctuations recorded for 12,500 years by soil profiles, pollen, and plant macrofossils in the central Swiss Alps. Arctic and Alpine Research 28, 131–147.CrossRefGoogle Scholar
  29. Tinner, W., Hubschmid, P., Wehrli, M., Ammann, B., and Conedera, M. (1999). Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology 87, 273–289.CrossRefGoogle Scholar
  30. Tinner, W., Conedera, M., Gobet, E., Hubschmid, P., Wehrli, M., and Ammann, B. (2000). Apalaeoecological attempt to classify fire sensitivity of trees in the southern Alps. The Holocene 10, 565–574.CrossRefGoogle Scholar
  31. Tinner, W., and Ammann, B. (2001). Timberline paleoecology in the Alps. PAGES News 9, 9–11.Google Scholar
  32. Tinner, W., and Lotter, A. F. (2001). Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554.CrossRefGoogle Scholar
  33. Tinner, W., and Theurillat, J.-P. (in press). Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arctic, Antarctic, and Alpine Research.Google Scholar
  34. Wegmüller, S., and Lotter, A. F. (1990). Palynostratigraphische Untersuchungen zur spät- und postglazialen Vegetationsgeschichte der nordwestlichen Kalkvoralpen. Botanica Helvetica 100, 37–73.Google Scholar
  35. Welten, M. (1982). Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen: Bern-Wallis. Denkschriften Schweizerische Naturforschende Gesellschaft 95, 1–104.Google Scholar
  36. Welten, M. (1944). Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Veröffentlichungen Geobotanisches Institut Rübel Zürich 21, 1–201.Google Scholar
  37. Wick Olatunbosi, L. (1996). “Spät- und postglaziale Vegetationsgeschichte in den Südalpen zwischen Comersee und Splügenpass (Norditalien).” Inaugural dissertation University of Bern, Bern.Google Scholar
  38. Wick, L., van Leeuwen, J. N. F., van der Knaap, W. O., and Lotter, A. F. (in press). Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. Journal of Palaeolimnology.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Willy Tinner
    • 1
  • Brigitta Ammann
    • 1
  1. 1.Institute of Plant Sciences, Section PaleoecologyUniversity of BernBernSwitzerland

Personalised recommendations