Advertisement

High Mountain Lakes and Atmospherically Transported Pollutants

  • Richard W. Battarbee
  • Simon Patrick
  • Martin Kernan
  • Roland Psenner
  • Hansjoerg Thies
  • Joan Grimalt
  • Bjoern O. Rosseland
  • Bente Wathne
  • Jordi Catalan
  • Rosario Mosello
  • Andrea Lami
  • David Livingstone
  • Evzen Stuchlik
  • Vera Straskrabova
  • Gunnar Raddum
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

Remote mountain lakes, whether found at high altitudes or high latitudes, usually appear to be in pristine condition. In particular, those lakes that are situated above or beyond the tree-line are rarely disturbed by agricultural or forestry practices and few if any people inhabit their catchments. However, recent research indicates that even the most remote lakes are impacted by atmospherically transported pollutants, and that greenhouse-gas forced climate change is beginning to have a significant influence on ecosystem functioning. UV-B radiation is also increasing and, in interaction with global warming, may already be changing biogeochemical cycles in many mountain lakes (Vinebrooke and Leavitt, this volume). All sites are subject to multiple stresses, and studies of the ecological response of mountain lakes to such combined stress need to consider interactions between all factors, both natural and anthropogenic. In this chapter, we consider acid deposition, toxic substances and climate change as the three main drivers of ecosystem change in high mountain lakes.

Keywords

Acid deposition Biology Chemistry Climate change Mountain lakes Toxic substances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agustí-Panareda, A., and Thompson, R. (2002). Reconstructing air temperature at eleven remote alpine and arctic lakes in Europe from 1781 to 1997 AD. Journal of Paleolimnology 28, 7–23.CrossRefGoogle Scholar
  2. Battarbee, R. W., Ed. (2002). MOLAR: Mountain lake research. Journal of Paleolimnology 28, 1–179.Google Scholar
  3. Battarbee, R. W. et al. (2001). Measuring and modelling the dynamic response of remote mountain lake ecosystems to environmental change (the MOLAR project). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27, 3774–3779.Google Scholar
  4. Battarbee, R. W. et al. (2002). Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28, 161–179.CrossRefGoogle Scholar
  5. Cameron, N. G. et al. (1999). Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. Journal of Paleolimnology 22, 291–317.CrossRefGoogle Scholar
  6. Catalan, J. et al. (2002a). Lake Redó ecosystem response to an increasing warming the Pyrenees during the twentieth century. Journal of Paleolimnology 28, 129–145.CrossRefGoogle Scholar
  7. Catalan, J. et al. (2002b). Seasonal ecosystem variability in remote mountain lakes: Implications for detecting climatic signals in sediment records. Journal of Paleolimnology 28, 25–46.CrossRefGoogle Scholar
  8. Fernández, P., Rose, N. L., Vilanova, R. M., and Grimait, J. O. (2002). Spatial and temporal comparison of polycyclic aromatic hydrocarbons and spheroidal carbonaceous particles in remote European lakes. Water, Air and Soil Pollution, Focus 2, 261–274.CrossRefGoogle Scholar
  9. Grimait, J. O. et al. (2001). Selective trapping of organochlorine compounds in mountain lakes of temperate areas. Environmental Science and Technology 35, 2690–2697.CrossRefGoogle Scholar
  10. Jones, V. J. et al. (1993). Palaeolimnologiccal evidence for the acidification and atmospheric contamination of lochs in the Cairngorm and Lochnagar areas of Scotland. Journal of Ecology 81, 3–24.CrossRefGoogle Scholar
  11. Koinig, K. A. et al. (2002). Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries: The influence of air temperature on biological parameters. Journal of Paleolimnology 28, 147–160.CrossRefGoogle Scholar
  12. Kopacek, J. et al. (2002). Hysteresis in reversal of Central European mountain lakes from atmospheric acidification. Water, Air and Soil Pollution Focus 2, 92–114.Google Scholar
  13. Lami, A. et al. (2000). Paleolimnology and ecosystem dynamics of remote European Alpine lakes (Mountain Lakes Research programme, MOLAR). Journal of Limnology 59, 1–119.Google Scholar
  14. MOLAR Chemistry Group (1999). The MOLAR Project: Atmospheric deposition and lake water chemistry. Journal of Limnology 58, 88–106.Google Scholar
  15. Mosello, R. et al. (2002). Trends in the chemical composition of high altitude lakes in Europe. Water, Air and Soil Pollution Focus 2, 75–89.CrossRefGoogle Scholar
  16. Psenner, R., and Schmidt, R. (1992). Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356, 781–783.CrossRefGoogle Scholar
  17. Raddum, G. G., and Fjellheim, A. (2002). Species composition of freshwater invertebrates in relation to chemical and physical factors in high mountains in southwestern Norway. Water, Air, and Soil Pollution Focus 2, 311–328.CrossRefGoogle Scholar
  18. Rognerud, S. et al. (2002). Mercury and organochlorine contamination in brown trout (Salmo trutta) and arctic charr (Salvelinus alpinus) from high mountain lakes in Europe and the Svalbard archipelago. Water, Air, and Soil Pollution Focus 2, 209–232.CrossRefGoogle Scholar
  19. Rosseland, B.-O. et al. (1999). The ecophysiology and ecotoxicology of fishes as a tool for monitoring and management strategy of high mountain lakes and lakes and rivers in acidified areas. Zoology 190, 90–100.Google Scholar
  20. Sovari, S., and Korhola, A. (1998). Recent diatom assemblage changes in subarctic Lake Saanajärvi, NW Finnish Lapland, and their palaeoenvironmental implications. Journal of Paleolimnology 20, 205–215.CrossRefGoogle Scholar
  21. Straskrabova, V. et al. (1999). Pelagic food web in mountain lakes (Mountain Lakes Research Program). Journal of Limnology 58, 1–222.CrossRefGoogle Scholar
  22. UNECE (1998). Convention on long-range transboundary air pollution, protocol on further reduction of sulphur emissions (http://www.unece.org/env/lrtap/fsulf_hl.htm).Google Scholar
  23. Wathne, B. M., and Hansen, H. E. (1997). “MOLAR: Measuring and modelling the dynamic response of remote mountain lake ecosystems to environmental change: A program of mountain lake research.” MOLAR Project manual. NIVA Report 0–96061, Oslo.Google Scholar
  24. Yang, H. et al. (2002). Mercury and lead budgets for Lochnagar, a Scottish mountain lake and its catchment. Environmental Science and Technology 36, 1383–1388.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Richard W. Battarbee
    • 1
  • Simon Patrick
    • 1
  • Martin Kernan
    • 1
  • Roland Psenner
    • 2
  • Hansjoerg Thies
    • 2
  • Joan Grimalt
    • 3
  • Bjoern O. Rosseland
    • 4
  • Bente Wathne
    • 4
  • Jordi Catalan
    • 5
  • Rosario Mosello
    • 6
  • Andrea Lami
    • 6
  • David Livingstone
    • 7
  • Evzen Stuchlik
    • 8
  • Vera Straskrabova
    • 9
  • Gunnar Raddum
    • 10
  1. 1.Environmental Change Research CentreUniversity College LondonUK
  2. 2.Institute of Zoology and LimnologyUniversity of InnsbruckAustria
  3. 3.Department of Environmental ChemistryConsejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
  4. 4.Norsk Institutt for Vannforskning (NIVA)OsloNorway
  5. 5.Centro de Estudios AvanzadosBlanes (CEAB-CSIC)BlanesSpain
  6. 6.Istituto Italiano di IdrobiologiaConsiglio Nazionale delle Ricerche (CNR)Verbania-PallanzaItaly
  7. 7.Eidgenössische AnstaltAbwasserreinigung und Gewässerschutz (EAWAG)DubendorfSwitzerland
  8. 8.Department of HydrobiologyCharles UniversityPragueCzech Republic
  9. 9.Hydrobiology InstituteCzech Academy of SciencesCeske BudejoviceCzech Republic
  10. 10.Institute of ZoologyUniversity of BergenNorway

Personalised recommendations