Advertisement

Palaeolimnological Investigations in the Alps: The Long-Term Development of Mountain Lakes

  • André F. Lotter
Part of the Advances in Global Change Research book series (AGLO, volume 23)

Abstract

Most mountain lakes and their catchments are, due to their remoteness, less impacted by human actions than lakes in lowland regions. They are, therefore, often considered pristine systems. Nevertheless, even remote, uninhabited areas are polluted via atmospheric deposition of aerosols that transport acid rain, heavy metals, organic compounds, and nutrients.

Keywords

Alps Aquatic ecosystems Climate change Human impact Mountain lakes Palaeolimnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battarbee, R. W., Grytnes, J. A., Thompson, R., Appleby, P., Catalan, J., Korhola, A., Birks, H. J. B., Heegaard, E., and Lami, A. (2002a). Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28, 161–179.CrossRefGoogle Scholar
  2. Battarbee, R. W., Thompson, R., Catalan, J., Grytnes, J. A., and Birks, H. J. B. (2002b). Climate variability and ecosystem dynamics of remote alpine and arctic lakes: The MOLAR project. Journal of Paleolimnology 28, 1–6.CrossRefGoogle Scholar
  3. Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., De Menocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266.CrossRefGoogle Scholar
  4. Catalan, J., Vetura, M., Brancelj, A., Granados, I., Thies, H., Nikus, U., Korhola, A., Lotter, A. F., Barbieri, A., Stuchlik, E., Lien, L., Bitusik, P., Buchaca, T., Camarero, L., Goudsmit, G. H., Kopacek, J., Lemcke, G., Livingstone, D. M., Müller, B., Rautio, M., Sisko, M., Sorvari, S., Sporka, F., Strunecky, O., and Toro, M. (2002). Seasonal ecosystem variability in remote mountain lakes: Implications for detecting climatic signals in sediment records. Journal of Paleolimnology 28, 25–46.CrossRefGoogle Scholar
  5. Dapples, F., Lotter, A. F., van Leeuwen, J. F. N., van der Knaap, W. O., Dimitriadis, S., and Oswald, D. (2002). Paleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Paleolimnology 27, 239–248.CrossRefGoogle Scholar
  6. Fernandez, P., Vilanova, R. M., Martinez, C., Appleby, P., and Grimait, J. O. (2000). The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes. Environmental Science and Technology 34, 1906–1913.CrossRefGoogle Scholar
  7. Hausmann, S., Lotter, A. F., van Leeuwen, J. F. N., Ohlendorf, C., Lemcke, G., Grönlund, E., and Sturm, M. (2002). Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. The Holocene 12, 279–289.CrossRefGoogle Scholar
  8. Herri, O. (2001). “Holocene palaeolimnology of Swiss mountain lakes reconstructed using subfossil chironomid remains: Past climate and prehistoric human impact on lake ecosystems.” Unpublished PhD thesis, Bern University.Google Scholar
  9. Herri, O., and Lotter, A. F. (2003). 9000 years of chironomid assemblage dynamics in an Alpine lake: long term faunistic trends, sensitivity of the community to disturbance, and resilience of the ecosystem. Journal of Paleolimnology 30 (in press).Google Scholar
  10. Heiri, O., Lotter, A. F., Hausmann, S., and Kienast, F. (2003). A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. The Holocene 13 (in press).Google Scholar
  11. Korhola, A., Lotter, A. F., Birks, H. J. B., and Cameron, N. G. (2000). Climate history as recorded by ecologically sensitive Artie and Alpine lakes in Europe during the last 10,000 years: A multi-proxy approach (CHILL-10,000). In “European Climate Science Conference Vienna 1998, CD-ROM.” European Commission.Google Scholar
  12. Leemann, A., and Niessen, F. (1994). Varve formation and the climatic record in an Alpine proglacial lake: Calibrating annually-laminated sediments against hydrological and meteorological data. The Holocene 4, 1–8.CrossRefGoogle Scholar
  13. Livingstone, D. M. (1997). Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change 37, 407–439.CrossRefGoogle Scholar
  14. Livingstone, D. M., and Lotter, A. F. (1998). The relationship between air and water temperatures in lakes of the Swiss Plateau: A case study with palaeolimnological implications. Journal of Paleolimnology 19, 181–198.CrossRefGoogle Scholar
  15. Livingstone, D. M., Lotter, A. F., and Walker, I. R. (1999). The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: A comparison with air temperature lapse rates. Arctic, Antarctic, and Alpine Research 31, 341–352.CrossRefGoogle Scholar
  16. Lotter, A. F., and Bigler, C. (2000). Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Sciences 62, 125–141.CrossRefGoogle Scholar
  17. Lotter, A. F., and Birks, H. J. B. (1997). The separation of the influence of nutrients and climate on the varve time-series of Baldeggersee, Switzerland. Aquatic Sciences 59, 362–375.CrossRefGoogle Scholar
  18. Lotter, A. F., and Birks, H. J. B. (2003a). The Holocene palaeolimnology of Sägistalsee (1935 m asl) and its environmental history: A synthesis. Journal of Paleolimnology 30 (in press).Google Scholar
  19. Lotter, A. F., and Birks, H. J. B. (2003b). Holocene sediments of Sägistalsee, a small lake at the present-day tree-line in the Swiss Alps. Journal of Paleolimnology 30 (in press).Google Scholar
  20. Lotter, A. F., Birks, H. J. B., Hofmann, W., and Marchetto, A. (1997). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18, 395–420.CrossRefGoogle Scholar
  21. Lotter, A. F., Birks, H. J. B., Hofmann, W., and Marchetto, A. (1998). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19, 43–463.CrossRefGoogle Scholar
  22. Lotter, A. F., Birks, H. J. B., Eicher, U., Hofmann, W., Schwander, J., and Wick, L. (2000a). Younger Dryas and Alleröd summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeography Palaeoclimatology, Palaeoecology 159, 349–361.CrossRefGoogle Scholar
  23. Lotter, A. F., Hofmann, W., Kamenik, C., Lami, A., Ohlendorf, C., Sturm, M., van der Knaap, W. O., and van Leeuwen, J. F. N. (2000b). Sedimentological and biostratigraphical analyses of short sediment cores from Hagelseewli (2339 m a.s.l.) in the Swiss Alps. Journal of Limnology 59, 53–64.CrossRefGoogle Scholar
  24. MOLAR Water Chemistry Group (1999). The MOLAR Project: Atmospheric deposition and lake water chemistry. Journal of Limnology 58, 88–106.Google Scholar
  25. Ohlendorf, C., Bigler, C., Goudsmit, G. H., Lemcke, G., Livingstone, D. M., Lotter, A. F., Müller, B., and Sturm, M. (2000). Causes and effects of long periods of ice cover on a remote high Alpine lake. Journal of Limnology 59, 65–80.CrossRefGoogle Scholar
  26. Schweingruber, F. H., Bartholin, T., Schär, E., and Briffa, K. R. (1988). Radiodensitometric dendrochronological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17, 559–566.CrossRefGoogle Scholar
  27. Sommaruga-Wögrath, S., Koining, K. A., Sommaruga, R., Tessadri, R., and Psenner, R. (1997). Temperature effects on the acidity of remote alpine lakes. Nature 387, 64–67.CrossRefGoogle Scholar
  28. Tinner, W., and Ammann, B. (2001). Timberline paleoecology in the Alps. PAGES News 9, 9–11.Google Scholar
  29. Wick, L., van Leeuwen, J. F. N., van der Knaap, W. O., and Lotter, A. F. (2003). Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. Journal of Paleolimnology 30 (in press).Google Scholar
  30. Wunsam, S., and Schmidt, R. (1995). A diatom-phosphorus transfer function for alpine and pre-alpine lakes. Memorie dell’Istituto Italiano di Idrobiologia 53, 85–99.Google Scholar
  31. Wunsam, S., Schmidt, R., and Klee, R. (1995). Cyclotella-taxa. (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquatic Sciences 57, 360–386.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • André F. Lotter
    • 1
  1. 1.Botanical Palaeoecology, Laboratory of Palaeobotany and PalynologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations