Water Resources in the Arid Mountains of the Atacama Desert (Northern Chile): Past Climate Changes and Modern Conflicts

  • Martin Grosjean
  • Heinz Veit
Part of the Advances in Global Change Research book series (AGLO, volume 23)


The Atacama Desert of the Central Andes (18°S to 28°S) has become a focal point of environmental research in recent years. Indeed, this area is a key site in several respects. It is located between the tropical and extratropical precipitation belts; the vertical gradients of ecozones range from sea level at the Pacific Coast up to high mountains that reach into the mid-troposphere at 6000 m elevation. The prominent mountain chain of the Andes stretches N-S, perpendicular to the zonal westerly airflow of the mid-latitudes, which creates distinct environmental gradients at meso-and micro-scales. Due to their sensitive location at the juncture between tropical and extratropical climate zones, paleoclimate records from this area may potentially provide important insights into the dynamics of the large-scale atmospheric circulation in the Central Andes in the past. This region therefore provides an ideal natural laboratory for paleoclimatologists.


Andes Arid zone Chile Climate change Holocene Quaternary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, M. B., Seltzer, G. O., Kelts, K., and Southon, J. (1997). Holocene paleohydrology of the tropical Andes from lake records. Quaternary Research 47, 70–80.CrossRefGoogle Scholar
  2. Aravena, R. (1995). Isotope hydrology and geochemistry of Northern Chile groundwaters. Bulletin de l’ Institut Français d’Etudes Andines 24, 495–503.Google Scholar
  3. Arroyo, M. T. K., Castor, C., Marticorena, C., Muñoz, M., Cavieres, L., Matthei, O., Squeo, F. A., Grosjean, M., and Rodriguez, R. (1998). The flora of Llullaillaco National Park in the transitional winter-summer rainfall area of the northern Chilean Andes. Gayana Botánica 55, 93–110.Google Scholar
  4. Baker, P. A., Rigsby, C. A, Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C. (2001). Tropical climate changes at millennial and orbital timescales in the Bolivian Altiplano. Nature 409, 698–701.CrossRefGoogle Scholar
  5. Betancourt, J. L., Latorre, C., Rech, J. A., Quade, J., and Rylander, K. A. (2000). A 22,000-year record of monsoonal precipitation from northern Chile’s Atacama Desert. Science 289, 1542–1546.CrossRefGoogle Scholar
  6. Bobst, A. L., Lowenstein, T. K., Jordan, T. E., Godfrey, L. V, Ku, T.-L., and Luo, S. (2001). A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 173, 21–42.CrossRefGoogle Scholar
  7. Blunier, T. Chapellaz, J., Schwander, J., Stauffer, B., and Raynaud, D. (1995). Variations in atmospheric methane concentrations during the Holocene epoch. Nature 374, 46–49.CrossRefGoogle Scholar
  8. Bradbury, J. P., Grosjean, M., Stine, S., and Sylvestre, F. (2001). Full- and late-glacial lake records along PEP-1 transect: Their role in developing inter-hemispheric paleoclimate interactions. In “Interhemispheric climate linkages.” (V Markgraf, Ed.), pp. 265–291. Academic Press, San Diego.CrossRefGoogle Scholar
  9. Clapperton, C. M. (1993). “Quaternary geology and geomorphology of South America.” Elsevier, Amsterdam.Google Scholar
  10. Clapperton, C. M., and Seltzer, G. O. (2001). Glaciation during Marine Isotope Stage 2 in the American Cordillera. In “Interhemispheric climate linkages.” (V Markgraf, Ed.), pp. 173–181. Academic Press, San Diego.CrossRefGoogle Scholar
  11. Fritz, P., Silva, C., Suzuki, O., and Salati, E. (1979). Isotope hydrology in northern Chile. IAEA-SM 228, 525–543.Google Scholar
  12. Garreaud, R. (1999). Multiscale analysis of summertime precipitation over the central Andes. Monthly Weather Review 127, 901–921.CrossRefGoogle Scholar
  13. Geyh, M., Grosjean, M., Nunez, L. A., and Schotterer, U. (1999). Radiocarbon reservoir effect and the timing of the late-glacial/early Holocene humid phase in the Atacama Desert, northern Chile. Quaternary Research 52, 143–153.CrossRefGoogle Scholar
  14. Geyh, M. A., Grosjean, M., Kruck, W., and Schotterer, U. (1996). Sincronopsis del desarrollo morfológico y climatológico del Chaco Boreal y de Atacama en los Ultimos 35.000 anos AP. In “Memorias del XII Congreso Geolögico de Bolivia, Tomo III.” pp. 1267–1276. Sociedad Geologica de Bolivia.Google Scholar
  15. Grosjean, M. (1994). Paleohydrology of the Laguna Lejia (Northchilean Altiplano) and climatic implications for lateglacial times. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 89–100.CrossRefGoogle Scholar
  16. Grosjean, M., Geyh, M., Messerli, B., and Schotterer, U. (1995). Late-glacial and early Holocene lake sediments, groundwater formation and climate in the Atacama Altiplano. Journal of Paleolimnology 14, 241–252.CrossRefGoogle Scholar
  17. Grosjean, M., Nunez, L. A., Cartajena, I., and Messerli, B. (1997). Mid-Holocene climate and culture change in the Atacama Desert, northern Chile. Quaternary Research 48, 239–246.CrossRefGoogle Scholar
  18. Grosjean, M., van Leeuwen, J., van der Knaap, W. O., Geyh, M., Ammann, B., Tanner, W., Messerli, B., and Veit, H. (2001). A 22,000 14C yr BP sediment and pollen record of climate change from Laguna Miscanti 23°S, northern Chile. Global and Planetary Change 28, 35–51.Google Scholar
  19. Grosjean, M. (2001). Mid-Holocene climate in the south-central Andes: Humid or dry? Science 292, 2391–2392.CrossRefGoogle Scholar
  20. Grosjean, M., Cartajena, I., Geyh, M. A., and Nunez, L. A. (2003). From proxy-data to paleoclimate interpretation: The mid-Holocene paradox of the Atacama Desert, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology (in press).Google Scholar
  21. Jenny, B., Valero-Garcés, B. L., Villa-Martinez, R., Urrutia, R., Geyh, M., and Veit, H. (2002). Evidence of early to mid-Holocene aridity in Central Chile related to the Southern Westerlies: The Laguna Aculeo record (34°S). Quaternary Research 58, 160–170.CrossRefGoogle Scholar
  22. Kull, C., and Grosjean, M. (2000). Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate-glacier model. Journal of Glaciology 46, 622–632.CrossRefGoogle Scholar
  23. Kull, C., Hänni, F., Grosjean, M., and Veit, H. (2003). Evidence of massive LGM cooling in NW-Argentina (22°S) derived from a glacier climate model. Quaternary International (in press).Google Scholar
  24. Kunz, A. (2001). “Limnologische Analyse von drei Seen in N-Chile und NW Argentinien und ihre paläoklimatische Interpretation.” Unpublished Diploma thesis, University of Bern, Bern.Google Scholar
  25. Larrain, H., Velásquez, F., Cereceda, P., Espejo, R., Pinto, R., Osses, P., and Schemenauer, R. S. (2002). Fog measurements at the site “Falda Verde” north of Chanaral compared with other fog stations of Chile. Atmospheric Research 64, 273–284.CrossRefGoogle Scholar
  26. Latorre, C., Betancourt, J. L., Rylander, K. A., and Quade, J. (2002). Vegetation invasion into absolute desert: A 45 k.y. rodent midden record from the Calama-Salar de Atacama basins, northern Chile (lat 22–24°S). Geological Society of America Bulletin 114, 349–366.CrossRefGoogle Scholar
  27. Maldonado, A., and Villagran, C. (2002). Paleoenvironmental changes in the semiarid coast of Chile (~32°S) during the last 6200 cal years inferred from a swamp-forest pollen record. Quaternary Research 58, 130–138.CrossRefGoogle Scholar
  28. Messerli, B., Grosjean, M., Bonani, G., Biirgi, A., Geyh, M., Graf, K., Ramseyer, K., Romero, H., Schotterer, U., Schreier, H., and Vuille, M. (1993). Climate change and natural resource dynamics of the Atacama Altiplano during the last 18,000 years: A preliminary synthesis. Mountain Research and Development 13, 117–127.CrossRefGoogle Scholar
  29. Messerli, B., Grosjean, M., and Vuille, M. (1997). Water availability, protected areas, and natural resources in the Andean Desert Altiplano. Mountain Research and Development 17, 229–238.CrossRefGoogle Scholar
  30. Mercurio de Santiago (1997). Universidades de II Region: Expertos Temen por Reserva Hidrica en Salar de Atacama. 28 July 1997.Google Scholar
  31. Nùñez, L., Grosjean, M., and Cartajena, I. (2002). Human occupations and climate change in the Puna de Atacama, Chile. Science 298, 821–824.CrossRefGoogle Scholar
  32. Pourrut, P., and Covarrubias, A. (1995). Existencia de agua en la II Region de Chile: Interrogantes e hipothesis. Bulletin de l’Institut Français d’Etudes Andines 24, 505–515.Google Scholar
  33. Romero, H. (2002). The Andes of Chile: Clash between economic and sustainable development. IHDP Newsletter 1, 7–9.Google Scholar
  34. Schotterer, U., Grosjean, M., Stichler, W., Kull, C., Ginot, P., Francou, B., Gäggeler, H., Gallaire, R., Hoffmann, G., Pouyaud, B., and Schwikowski, M. (2003). Glaciers and climate in the Andes between the Equator and 30°S: What is recorded under extreme environmental conditions? Climatic Change (in press).Google Scholar
  35. Shulmeister, J. (1999). Australasian evidence for mid-Holocene climate change implies precessional control of Walker Circulation in the Pacific. Quaternary International 57/58, 81–91.CrossRefGoogle Scholar
  36. Veit, H. (1996). Southern Westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, Northern Chile (27–33°S). Palaeogeography, Palaeoclimatology, Palaeoecology 123, 107–119.CrossRefGoogle Scholar
  37. Vuille, M. (1999). Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Internationaljournal of Climatology 19, 1579–1600.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Martin Grosjean
    • 1
  • Heinz Veit
    • 2
  1. 1.NCCR ClimateUniversity of BernBernSwitzerland
  2. 2.Department of GeographyUniversity of BernBernSwitzerland

Personalised recommendations