Skip to main content

Abstract

Single crystal graphite specimens were compressed at a room temperature in the diamond anvil cell in the c-axis direction. High pressure values up to 58 GPa and shear deformation up to 30° were used.

We found out appearance of filament-like or lamella structures. Their appearance is result of formation of two mutually perpendicular frameworks of graphite. Schemes of possible co-arrangement of two mutually perpendicular graphite frameworks are proposed. This construction should lead to formation of straight lines of carbon atoms, which associated with sp3- bonds along this boundary. Presence of weak band at 1150 cm−1 in Raman spectra as well as equality of intensity of D- and G- peaks can be considered as an evidence for the presence of sp3-bonds. We observed increase in elastic modulus of the surface of our specimens by Scanning Probe Microscopy method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mao W. L., Mao H., Eng P. J., et al. Science 302 2003; 425

    Article  CAS  Google Scholar 

  2. Goncharov A.F. Pisma v JETF [in Russian] 1990; 51(7): 368

    CAS  Google Scholar 

  3. Goncharov A.F. JETF [in Russian] 1990; 98(5): 1824

    CAS  Google Scholar 

  4. Schindler T.L., Vohra Y.K. J. Phys. Condens. Mater. 1995; 7: L 637

    Article  CAS  Google Scholar 

  5. Aksenenkov V.V., Blank V.D., Borovikov N.F., et al. DAN [in Russian] 1995; 338(4): 472

    Google Scholar 

  6. Britun V.F., Kurdumov A.V. Superhard Materials 2001; 2: 3

    Google Scholar 

  7. Gogolinsky K.V., Reshetov V.N. Industrial laboratory. Diagnostics of materials [in Russian] 1998; 64(6): 30

    Google Scholar 

  8. Schreck M., Baur T., Fehling R. et al., Diam. Rel. Mat. 1998; 7: 293

    Article  CAS  Google Scholar 

  9. Leeds S.M., Davis T.J.,. May P.M., et al. Diam. Rel. Mat. 1998; 7: 200

    Article  Google Scholar 

  10. Prawer S., Nugent K.W. Jamieson D.N., Diam. Rel. Mat. 1998; 7: 106

    Article  CAS  Google Scholar 

  11. Preiffer R., Kuzmany H., Salk N. Gunter B., Appl. Phys. Lett. 2003; 82(23): 4149

    Article  Google Scholar 

  12. Hiura H., Ebbesen T.W., Fujita T., et al. Letters to Nature 1994; 367: 148

    Article  CAS  Google Scholar 

  13. Balaban A.T. Klein D.J., Folden C.A., Chem. Phys. Lett. 1994; 217(3): 266

    Article  Google Scholar 

  14. Freise E.J., Kelly A. Proc. Roy. Soc., A. 1961; 264∣: 269

    Google Scholar 

  15. Shafranovsky G.I. Zapiski Vsesoyuznogo mineralogicheskogo obschestva [in Russian] 1983; 112(1): 74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Blank, V. et al. (2005). Peculiarities of Graphite Transformation under High Pressure. In: Lee, J., Novikov, N., Turkevich, V. (eds) Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing. NATO Science Series II: Mathematics, Physics and Chemistry, vol 200. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3471-7_14

Download citation

Publish with us

Policies and ethics