Skip to main content

Rho Proteins and Vesicle Trafficking

  • Chapter
RHO Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 3))

  • 497 Accesses

Abstract

Membrane trafficking includes a highly dynamic and intricate set of intracellular pathways responsible for the transport of molecules in and out of the cell, and between the different intracellular compartments. A lot of attention has been paid in the past decades to the role played by distinct classes of small GTPases on the regulation of membrane trafficking, with special emphasis on the Rab and Arf families. More recently, Rho GTPases have been implicated in several important aspects of membrane trafficking. The initial indications that Rho proteins might be involved in membrane trafficking came from the observation of the localization of some of these proteins at specific intracellular compartments. These observations are corroborated by the findings of specific effects of these proteins on different membrane transport pathways. The role played by Rho family members in different aspects of membrane trafficking will be considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson P, Paterson HF, Hall A. Intracellular localization of the p21rho proteins. J Cell Biol. 1992, 119:617–627.

    Article  CAS  PubMed  Google Scholar 

  • Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999, 17:593–623.

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Hotchin NA. RAC1 regulates adherens junctions through endocytosis of Ecadherin. Mol Biol Cell. 2001, 12:847–862.

    CAS  PubMed  Google Scholar 

  • Albert ML, Kim JI, Birge RB. alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol. 2000, 2:899–905.

    Article  CAS  PubMed  Google Scholar 

  • Black DS, Bliska JB. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol. 2000, 37(3):515–27.

    Article  CAS  PubMed  Google Scholar 

  • Bretscher MS, Aguado-Velasco C. EGF induces recycling membrane to form ruffles. Curr Biol. 1998-A, 8:721–724.

    Article  CAS  PubMed  Google Scholar 

  • Bretscher MS, Aguado-Velasco C. Membrane traffic during cell locomotion. Curr Opin Cell Biol. 1998-B, 10:537–541.

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, O'Sullivan AJ, Gomperts BD. Induction of exocytosis from permeabilized mast cells by the guanosine triphosphatases Rac and Cdc42. Mol Biol Cell. 1998, 9:1053–1063.

    CAS  PubMed  Google Scholar 

  • Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC, Macara IG, Madhani H, Fink GR, Ravichandran KS. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol. 2002, 4:574–582.

    CAS  PubMed  Google Scholar 

  • Brunet N, Morin A, Olofsson B. RhoGDI-3 regulates RhoG and targets this protein to the Golgi complex through its unique N-terminal domain. Traffic. 2002, 3:342–357.

    Article  CAS  PubMed  Google Scholar 

  • Camacho L, Malho R. Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot. 2003, 54:83–92

    Article  CAS  PubMed  Google Scholar 

  • Caron E, Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science. 1998, 282:1717–1721.

    Article  CAS  PubMed  Google Scholar 

  • Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR. Insulin-stimulated GLUT4 translocation requires the CAPdependent activation of TC10. Nature. 2001, 410:944–948.

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Adams RD, Saltiel AR. The TC10-interacting protein CIP4/2 is required for insulinstimulated Glut4 translocation in 3T3L1 adipocytes. Proc Natl Acad Sci U S A. 2002, 99:12835–12840.

    Article  CAS  PubMed  Google Scholar 

  • Chiang S-H, Hwang J, Legendre M, Zhang M, Kimura A, Saltiel AR. TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO J. 2003, 22:2679–2691.

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Musch A, Rodriguez-Boulan E. Selective control of basolateral membrane protein polarity by cdc42. Traffic. 2001, 2:556–564.

    Article  CAS  PubMed  Google Scholar 

  • Coppolino MG, Krause M, Hagendorff P, Monner DA, Trimble W, Grinstein S, Wehland J, Sechi AS. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis. J Cell Sci. 2001, 114:4307–4318.

    CAS  PubMed  Google Scholar 

  • Cormont M, Le Marchand-Brustel Y. The role of small G-proteins in the regulation of glucose transport. Mol Membr Biol. 2001, 18:213–220.

    Article  CAS  PubMed  Google Scholar 

  • Cote JF, Vuori K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci. 2002, 115:4901–4913.

    Article  CAS  PubMed  Google Scholar 

  • Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med. 1997, 186:1487–1494.

    Article  CAS  PubMed  Google Scholar 

  • de Curtis I. Cell migration: GAPs between membrane traffic and the cytoskeleton. EMBO Rep. 2001 Apr;2(4):277–81. Review.

    Article  PubMed  Google Scholar 

  • Del Pozo MA, Kiosses WB, Alderson NB, Meller N, Hahn KM, Schwartz MA. Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol. 2002, 4:232–239.

    Article  PubMed  Google Scholar 

  • Dharmawardhane S, Sanders LC, Martin SS, Daniels RH, Bokoch GM. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J Cell Biol. 1997, 138:1265–1278.

    Article  CAS  PubMed  Google Scholar 

  • Dharmawardhane S, Brownson D, Lennartz M, Bokoch GM. Localization of p21-activated kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human neutrophils. J Leukoc Biol. 1999, 66:521–527.

    CAS  PubMed  Google Scholar 

  • Dharmawardhane S, Schurmann A, Sells MA, Chernoff J, Schmid SL, Bokoch GM. Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell. 2000, 11:3341–3352.

    CAS  PubMed  Google Scholar 

  • Doussau F, Gasman S, Humeau Y, Vitiello F, Popoff M, Boquet P, Bader MF, Poulain B. A Rho-related GTPase is involved in Ca(2+)-dependent neurotransmitter exocytosis. J Biol Chem. 2000, 275:7764–7770.

    Article  CAS  PubMed  Google Scholar 

  • Ellis S., Mellor H. The novel Rho-family GTPase Rif regulates coordinated actin-based membrane rearrangements. Curr. Biol. 2000, 10:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Erickson JW, Zhang C, Kahn RA, Evans T, Cerione RA. Mammalian Cdc42 Is a Brefeldin Asensitive Component of the Golgi Apparatus. J Biol Chem. 1996:271:26850–26854.

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Galán JE. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature. 1999, 401:293–297.

    Article  CAS  PubMed  Google Scholar 

  • Gampel A, Parker PJ, Mellor H. Regulation of epidermal growth factor receptor traffic by the small GTPase rhoB. Curr Biol. 1999, 9:955–958.

    Article  CAS  PubMed  Google Scholar 

  • Garred O, Rodal SK, van Deurs B, Sandvig K. Reconstitution of clathrin-independent endocytosis at the apical domain of permeabilized MDCK II cells: requirement for a Rhofamily GTPase. Traffic. 2001, 2:26–36.

    Article  CAS  PubMed  Google Scholar 

  • Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S, Galan JE, Mellman I. Developmental control of endocytosis in dendritic cells by Cdc42. Cell. 2000, 102:325–334.

    Article  CAS  PubMed  Google Scholar 

  • Gasman S, Chasserot-Golaz S, Hubert P, Aunis D, Bader MF. Identification of a potential effector pathway for the trimeric Go protein associated with secretory granules. Go stimulates a granule-bound phosphatidylinositol 4-kinase by activating RhoA in chromaffin cells. J Biol Chem. 1998, 273:16913–16920.

    Article  CAS  PubMed  Google Scholar 

  • Gasman S, Chasserot-Golaz S, Popoff MR, Aunis D, Bader MF. Involvement of Rho GTPases in calcium-regulated exocytosis from adrenal chromaffin cells. J Cell Sci. 1999, 112:4763–4771.

    CAS  PubMed  Google Scholar 

  • Gasman S, Kalaidzidis Y, Zerial M. RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nat Cell Biol. 2003, 5:195–204.

    Article  CAS  PubMed  Google Scholar 

  • Gauthier-Rouviere C, Vignal E, Meriane M, Roux P, Montcourier P, Fort P. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs. Mol Biol Cell. 1998, 9:1379–1394.

    CAS  PubMed  Google Scholar 

  • Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell. 1996, 87:227–239.

    Article  CAS  PubMed  Google Scholar 

  • Goehring U-M, Schmidt G, Pederson KJ, Aktories K, Barbier JT. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem. 1999, 274:36369–36372.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell. 2000, 100:671–679.

    Article  CAS  PubMed  Google Scholar 

  • Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, Schedl T, Qin Y, Van Aelst L, Hengartner MO, Ravichandran KS. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell. 2001, 107:27–41.

    Article  CAS  PubMed  Google Scholar 

  • Hardt W-D, Chen LM, Schuebel KE, Bustelo XR, Galán JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998, 93:815–826.

    Article  CAS  PubMed  Google Scholar 

  • Hong-Geller E, Cerione RA. Cdc42 and Rac stimulate exocytosis of secretory granules by activating the IP(3)/calcium pathway in RBL-2H3 mast cells. J Cell Biol. 2000, 148:481–494.

    Article  CAS  PubMed  Google Scholar 

  • Humeau Y, Popoff MR, Kojima H, Doussau F, Poulain B. Rac GTPase plays an essential role in exocytosis by controlling the fusion competence of release sites. J Neurosci. 2002, 22:7968–7981

    CAS  PubMed  Google Scholar 

  • Hussain NK, Yamabhai M, Ramjaun AR, Guy AM, Baranes D, O'Bryan JP, Der CJ, Kay BK, McPherson PS. Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. J Biol Chem. 1999, 274:15671–15677.

    Article  CAS  PubMed  Google Scholar 

  • Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, Guipponi M, Antonarakis SE, Kay BK, Stossel TP, Lamarche-Vane N, McPherson PS. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol. 2001, 3:927–932.

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Chang L, Hwang J, Chiang SH, Saltiel AR. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature. 2003, 422:629–633.

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZY, Chawla A, Bose A, Way M, Czech MP. A phosphatidylinositol 3-kinaseindependent insulin signaling pathway to N-WASP/Arp2/3/F-actin required for GLUT4 glucose transporter recycling. J Biol Chem. 2002, 277:509–515.

    Article  CAS  PubMed  Google Scholar 

  • Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol. 1998, 8:1399–1402.

    Article  CAS  PubMed  Google Scholar 

  • Jou TS, Leung SM, Fung LM, Ruiz WG, Nelson WJ, Apodaca G. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol Biol Cell. 2000, 11:287–304.

    CAS  PubMed  Google Scholar 

  • Kang F, Laine RO, Bubb MR, Southwick FS, Purich DL. Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator stimulated phosphoprotein (VASP): implications for actin-based Listeria motility. Biochemistry. 1997, 36:8384–8392.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A, Kuroda S, Sasaki T, Kotani K, Hirata K, Katayama M, Takai Y. Functional interactions of stimulatory and inhibitory GDP/GTP exchange proteins and their common substrate small GTP-binding protein. J Biol Chem 1992, 267:14611–14615.

    CAS  PubMed  Google Scholar 

  • Kiosses WB, Daniels HR, Otey C, Bokoch GM, and Schwartz MA. (1999). A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 1999, 147:831–843.

    Article  CAS  PubMed  Google Scholar 

  • Kowluru A, Li G, Rabaglia ME, Segu VB, Hofmann F, Aktories K, Metz SA. Evidence for differential roles of the Rho subfamily of GTP-binding proteins in glucose-and calciuminduced insulin secretion from pancreatic beta cells. Biochem Pharmacol. 1997, 54:1097–1108.

    Article  CAS  PubMed  Google Scholar 

  • Krause M, Sechi AS, Konradt M, Monner D, Gertler FB, Wehland J. Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol. 2000, 149:181–194.

    Article  CAS  PubMed  Google Scholar 

  • Kroschewski R, Hall A, Mellman I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol. 1999, 1:8–13.

    Article  CAS  PubMed  Google Scholar 

  • Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL. Regulation of receptormediated endocytosis by Rho and Rac. Nature. 1996, 382:177–179.

    Article  CAS  PubMed  Google Scholar 

  • Leung SM, Rojas R, Maples C, Flynn C, Ruiz WG, Jou TS, Apodaca G. Modulation of endocytic traffic in polarized Madin-Darby canine kidney cells by the small GTPase RhoA. Mol Biol Cell. 1999, 10:4369–4384.

    CAS  PubMed  Google Scholar 

  • Leverrier Y, Ridley AJ. Requirement for Rho GTPases and PI 3-kinases during apoptotic cell phagocytosis by macrophages. Curr Biol. 2001, 11:195–199.

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Lo CG, Cerione RA, Yang W. The Cdc42 target ACK2 interacts with sorting nexin 9 (SH3PX1) to regulate epidermal growth factor receptor degradation. J Biol Chem. 2002, 277:10134–10138.

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Bagrodia S, Cerione R, Manor D. A novel Cdc42Hs mutant induces cellular transformation. Curr Biol. 1997, 7:794–797.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Yang Z. Inhibition of pollen tube elongation by microinjected anti-Ropl Ps antibodies suggests a crucial role for Rho-type GTPases in the control of tip growth. Plant Cell. 1997, 9:1647–1659.

    Article  CAS  PubMed  Google Scholar 

  • Lipschutz JH, Mostov KE. Exocytosis: the many masters of the exocyst. Curr Biol. 2002, 12:R212–214.

    Article  CAS  PubMed  Google Scholar 

  • Lowe M, Kreis TE. Regulation of membrane traffic in animal cells by COPI. Biochim Biophys Acta. 1998, 1404:53–66.

    Article  CAS  PubMed  Google Scholar 

  • Luna A, Matas OB, Martinez-Menarguez JA, Mato E, Duran JM, Ballesta J, Way M, Egea G. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell. 2002, 13:866–879.

    Article  CAS  PubMed  Google Scholar 

  • Malecz N, McCabe PC, Spaargaren C, Qiu R, Chuang Y, Symons M. Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr Biol. 2000, 10:1383–1386.

    Article  CAS  PubMed  Google Scholar 

  • Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell. 1998, 1:183–192.

    Article  CAS  PubMed  Google Scholar 

  • Mariot P, O'Sullivan AJ, Brown AM, Tatham PE. Rho guanine nucleotide dissociation inhibitor protein (RhoGDI) inhibits exocytosis in mast cells. EMBO J. 1996, 15:6476–6482.

    CAS  PubMed  Google Scholar 

  • Massol P, Montcourrier P, Guillemot JC, Chavrier P. Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J. 1998, 17:6219–6229.

    Article  CAS  PubMed  Google Scholar 

  • Matafora V, Paris S, Dariozzi S, de Curtis I. Molecular mechanisms regulating the subcellular localization of p95-APP1 between the endosomal recycling compartment and sites of actin organization at the cell surface. J Cell Sci. 2001, 114:4509–4520.

    CAS  PubMed  Google Scholar 

  • May RC, Caron E, Hall A, Machesky LM. Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. Nat Cell Biol. 2000, 2:246–248.

    Article  CAS  PubMed  Google Scholar 

  • Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001, 106:255–258.

    Article  CAS  PubMed  Google Scholar 

  • Mellor H, Flynn P, Nobes CD, Hall A, Parker PJ. PRK1 is targeted to endosomes by the small GTPase, RhoB. J Biol Chem. 1998, 273:4811–4814.

    Article  CAS  PubMed  Google Scholar 

  • Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M, Philips MR. Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol. 2001, 152:111–126.

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Saffrich R, Grummt M, Gournier H, Rybin V, Rubino M, Auvinen P, Lutcke A, Parton RG, Zerial M. Endosome dynamics regulated by a Rho protein. Nature. 1996, 384:427–432.

    Article  CAS  PubMed  Google Scholar 

  • Müsch A, Cohen D, Kreitzer G, Rodriguez-Boulan E. Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 2001, 20:2171–2179.

    Article  PubMed  Google Scholar 

  • Nabi IR. The polarization of the motile cell. J Cell Sci. 1999, 112:1803–1811.

    CAS  PubMed  Google Scholar 

  • Norman JC, Price LS, Ridley AJ, Koffer A. The small GTP-binding proteins, Rac and Rho, regulate cytoskeletal organization and exocytosis in mast cells by parallel pathways. Mol Biol Cell. 1996, 7:1429–1442.

    CAS  PubMed  Google Scholar 

  • Okamoto M, Schoch S, Sudhof TC. EHSH1/intersectin, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J Biol Chem. 1999, 274:18446–18454.

    Article  CAS  PubMed  Google Scholar 

  • Olazabal IM, Caron E, May RC, Schilling K, Knecht DA, Machesky LM. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcgammaR, phagocytosis. Curr Biol. 2002, 12:1413–1418.

    Article  CAS  PubMed  Google Scholar 

  • Paglini G, Peris L, Diez-Guerra J, Quiroga S, Caceres A. The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep. 2001, 2:1139–1144.

    Article  CAS  PubMed  Google Scholar 

  • Palmieri SJ, Nebl T, Pope RK, Seastone DJ, Lee E, Hinchcliffe EH, Sluder G, Knecht D, Cardelli J, Luna EJ. Mutant Rac1B expression in Dictyostelium: effects on morphology, growth, endocytosis, development, and the actin cytoskeleton. Cell Motil Cytoskeleton. 2000, 46:285–304.

    Article  CAS  PubMed  Google Scholar 

  • Pantaloni D, Carlier MF. How profilin promotes actin filament assembly in the presence of thymosin b4. Cell. 11993, 75:1007–1014.

    Article  Google Scholar 

  • Patel JC, Hall A, Caron E. Vav regulates activation of Rac but not Cdc42 during FcgammaRmediated phagocytosis. Mol Biol Cell. 2002, 13:1215–1226.

    Article  CAS  PubMed  Google Scholar 

  • Price LS, Norman JC, Ridley AJ, Koffer A. The small GTPases Rac and Rho as regulators of secretion in mast cells. Curr Biol. 1995, 5:68–73.

    Article  CAS  PubMed  Google Scholar 

  • Reddien PW, Horvitz HR. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol. 2000, 2:131–136.

    Article  CAS  PubMed  Google Scholar 

  • Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch BM, Walter U. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 1995, 14:1583–1589.

    CAS  PubMed  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992, 70:401–410.

    Article  CAS  PubMed  Google Scholar 

  • Robertson D, Paterson HF, Adamson P, Hall A, Monaghan P. Ultrastructural localization of ras-related proteins using epitope-tagged plasmids. J Histochem Cytochem. 1995, 43(5):471–80.

    CAS  PubMed  Google Scholar 

  • Rojas R, Ruiz WG, Leung SM, Jou TS, Apodaca G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin-Darby canine kidney cells. Mol Biol Cell. 2001, 12:2257–2274.

    CAS  PubMed  Google Scholar 

  • Roos J, Kelly RB. Dap160, a neural-specific Eps15 homology and multiple SH3 domaincontaining protein that interacts with Drosophila dynamin. J Biol Chem. 1998 Jul 24;273(30):19108–19.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger CM, Finlay BB. Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat Rev Mol Cell Biol. 2003, 4:385–396.

    Article  CAS  PubMed  Google Scholar 

  • Sabharanjak S, Sharma P, Parton RG, Mayor S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell. 2002, 2:411–423.

    Article  CAS  PubMed  Google Scholar 

  • Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000, 407:784–788.

    Article  CAS  PubMed  Google Scholar 

  • Schmid SL. Biochemical requirements for the formation of clathrin-and COP-coated transport vesicles. Curr Opin Cell Biol. 1993 5:621–627.

    Article  CAS  PubMed  Google Scholar 

  • Sells, M.A., Boyd, J.T., and Chernoff, J. (1999). p21-Activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 1999, 145:837–849.

    Article  CAS  PubMed  Google Scholar 

  • Sengar AS, Wang W, Bishay J, Cohen S, Egan SE. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 1999, 18:1159–1171.

    Article  CAS  PubMed  Google Scholar 

  • Shorter J, Warren G. Golgi architecture and inheritance. Annu Rev Cell Dev Biol. 2002, 18:379–420.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan R, Price LS, Koffer A. Rho controls cortical F-actin disassembly in addition to, but independently of, secretion in mast cells. J Biol Chem. 1999, 274:38140–38146.

    Article  CAS  PubMed  Google Scholar 

  • Teo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem. 2001, 276:18392–18398.

    Article  CAS  PubMed  Google Scholar 

  • Tsubakimoto K, Matsumoto K, Abe H, Ishii J, Amano M, Kaibuchi K, Endo T. Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene. 1999, 18:2431–2440.

    Article  CAS  PubMed  Google Scholar 

  • Turner CE, West KA, Brown MC. Paxillin-ARF GAP signaling and the cytoskeleton. Curr Opin Cell Biol. 2001, 13:593–599.

    Article  CAS  PubMed  Google Scholar 

  • Vogler O, Krummenerl P, Schmidt M, Jakobs KH, Van Koppen CJ. Related Articles, Links Free Full Text RhoA-sensitive trafficking of muscarinic acetylcholine receptors. J Pharmacol Exp Ther. 1999, 288:36–42.

    CAS  PubMed  Google Scholar 

  • Watson RT, Shigematsu S, Chiang SH, Mora S, Kanzaki M, Macara IG, Saltiel AR, Pessin JE. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J Cell Biol. 2001, 154:829–840.

    Article  CAS  PubMed  Google Scholar 

  • West MA, Prescott AR, Eskelinen EL, Ridley AJ, Watts C. Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr Biol. 2000, 10:839–848.

    Article  CAS  PubMed  Google Scholar 

  • Wu WJ, Erickson JW, Lin R, Cerione RA. The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature. 2000, 405:800–804.

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Tsai MC, Cheng LC, Chou CJ, Weng NY. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev Cell. 2001, 1:491–502.

    Article  CAS  PubMed  Google Scholar 

  • Yamabhai M, Hoffman NG, Hardison NL, McPherson PS, Castagnoli L, Cesareni G, Kay BK. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem. 1998, 273:31401–31407.

    Article  CAS  PubMed  Google Scholar 

  • Yang Z. Small GTPases: versatile signalling switches in plants. The Plant Cell. 2002, 14, S375–388.

    CAS  PubMed  Google Scholar 

  • Yang W, Lo CG, Dispenza T, Cerione RA. The Cdc42 target ACK2 directly interacts with clathrin and influences clathrin assembly. J Biol Chem. 2001, 276:17468–17473.

    Article  CAS  PubMed  Google Scholar 

  • Yonei SG, Oishi K, Uchida MK. Regulation of exocytosis by the small GTP-binding protein Rho in rat basophilic leukemia (RBL-2H3) cells. Gen Pharmacol. 1995, 26:1583–1589.

    CAS  PubMed  Google Scholar 

  • Zhou Z, Caron E, Hartwieg E, Hall A, Horvitz HR. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev Cell. 2001, 1:477–489.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

De Curtis, I. (2005). Rho Proteins and Vesicle Trafficking. In: Manser, E. (eds) RHO Family GTPases. Proteins and Cell Regulation, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3462-8_9

Download citation

Publish with us

Policies and ethics