Skip to main content

Rho Proteins and Microtubules

  • Chapter
RHO Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 3))

  • 560 Accesses

Abstract

Rho GTPases have increasingly become recognized as prominent regulators of the microtubule (MT) cytoskeleton. Whereas Rho GTPases regulate the de novo formation of distinct actin arrays (stress fibers, lamellipodia, and filopodia), with MTs, which are present as extensive and dynamic arrays in the absence of Rho GTPase signaling, Rho GTPases principally modify the behavior and dynamics of individual MTs within an existing array. Despite this seemingly modulatory role, Rho GTPases have to profound effects on the MT cytoskeleton. The action of Rho GTPases is primarily exerted at the ends of MTs and causes changes in: (1) dynamics of MT plus ends either through MAPs or sequestering proteins, (2) interactions of MT plus ends with targets in the cortex, in kinetochores or at other sites, a process termed MT capture or (3) the activity of MT minus ends at the centrosome. In many cases, specific GTPases and effectors are known to regulate each of these processes and constitute signaling pathways to regulate MTs. Additionally, MTs can in turn influence the activity of Rho GTPases by interacting with the guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) regulating their function. Together, MTs and Rho GTPases have a dynamic relationship that allows a cell to quickly respond to and integrate a variety of stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adames, N. R., and Cooper, J. A. (2000). Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 149, 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Adams, R. R., Tavares, A. A., Salzberg, A., Bellen, H. J., and Glover, D. M. (1998). pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev 12, 1483–1494.

    CAS  PubMed  Google Scholar 

  • Ahringer, J. (2003). Control of cell polarity and mitotic spindle positioning in animal cells. Curr Opin Cell Biol 15, 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Alberts, A. S. (2001). Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276, 2824–2830.

    Article  CAS  PubMed  Google Scholar 

  • Amano, M., Kaneko, T., Maeda, A., Nakayama, M., Ito, M., Yamauchi, T., Goto, H., Fukata, Y., Oshiro, N., Shinohara, A., et al. (2003). Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. J Neurochem 87, 780–790.

    Article  CAS  PubMed  Google Scholar 

  • Arimura, N., Inagaki, N., Chihara, K., Menager, C., Nakamura, N., Amano, M., Iwamatsu, A., Goshima, Y., and Kaibuchi, K. (2000). Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275, 23973–23980.

    Article  CAS  PubMed  Google Scholar 

  • Arimura, N., Menager, C., Fukata, Y., and Kaibuchi, K. (2004). Role of CRMP-2 in neuronal polarity. J Neurobiol 58,34–47.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, M., Worth, D., Prowse, D. M., and Nikolic, M. (2002). Pak1 phosphorylation on t212 affects microtubules in cells undergoing mitosis. Curr Biol 12, 1233–1239.

    Article  CAS  PubMed  Google Scholar 

  • Beach, D. L., Thibodeaux, J., Maddox, P., Yeh, E., and Bloom, K. (2000). The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 10, 1497–1506.

    Article  CAS  PubMed  Google Scholar 

  • Belmont, L. D., and Mitchison, T. J. (1996). Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631.

    Article  CAS  PubMed  Google Scholar 

  • Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A., and Geiger, B. (1996). Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr Biol 6, 1279–1289.

    Article  CAS  PubMed  Google Scholar 

  • Bito, H., Furuyashiki, T., Ishihara, H., Shibasaki, Y., Ohashi, K., Mizuno, K., Maekawa, M., Ishizaki, T., and Narumiya, S. (2000). A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26, 431–441.

    Article  CAS  PubMed  Google Scholar 

  • Bulinski, J. C., and Gundersen, G. G. (1991). Stabilization of post-translational modification of microtubules during cellular morphogenesis. Bioessays 13, 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Carminati, J. L., and Stearns, T. (1997). Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol 138, 629–641.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, P., Gupta, M. L., Jr., Hoyt, M. A., and Pellman, D. (2004). Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev Cell 6, 815–829.

    Article  CAS  PubMed  Google Scholar 

  • Cassimeris, L. (2002). The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14, 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Cau, J., Faure, S., Comps, M., Delsert, C., and Morin, N. (2001). A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol 155, 1029–1042.

    Article  CAS  PubMed  Google Scholar 

  • Cerione, R. A. (2004). Cdc42: new roads to travel. Trends Cell Biol 14, 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Chevrier, V., Piel, M., Collomb, N., Saoudi, Y., Frank, R., Paintrand, M., Narumiya, S., Bornens, M., and Job, D. (2002). The Rho-associated protein kinase p160ROCK is required for centrosome positioning. J Cell Biol 157, 807–817.

    Article  CAS  PubMed  Google Scholar 

  • Colombo, K., Grill, S. W., Kimple, R. J., Willard, F. S., Siderovski, D. P., and Gonczy, P. (2003). Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300, 1957–1961.

    Article  CAS  PubMed  Google Scholar 

  • Contos, J. J., Ishii, I., and Chun, J. (2000). Lysophosphatidic acid receptors. Mol Pharmacol 58, 1188–1196.

    CAS  PubMed  Google Scholar 

  • Cook, T. A., Nagasaki, T., Gundersen, G.G. (1998). Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol 141, 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, C. R., and Hyman, A. A. (2004). Asymmetric Cell Division in C. elegans: Cortical Polarity and Spindle Positioning. Annu Rev Cell Dev Biol.

    Google Scholar 

  • Danowski, B. A. (1989). Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J Cell Sci 93 ( Pt 2), 255–266.

    CAS  PubMed  Google Scholar 

  • Daub, H., Gevaert, K., Vandekerckhove, J., Sobel, A., and Hall, A. (2001). Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 276, 1677–1680.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Pruyne, D., and Bretscher, A. (2003). Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J Cell Biol 161, 1081–1092.

    Article  CAS  PubMed  Google Scholar 

  • Dujardin, D. L., Barnhart, L. E., Stehman, S. A., Gomes, E. R., Gundersen, G. G., and Vallee, R. B. (2003). A role for cytoplasmic dynein and LIS1 in directed cell movement. J Cell Biol 163, 1205–1211.

    Article  CAS  PubMed  Google Scholar 

  • Enomoto, T. (1996). Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct Funct 21, 317–326.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville, S., Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville, S., Hall, A. (2003). Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756.

    Article  CAS  PubMed  Google Scholar 

  • Evangelista, M., Blundell, K., Longtine, M. S., Chow, C. J., Adames, N., Pringle, J. R., Peter, M., and Boone, C. (1997). Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, J. A., Keshvara, L. M., Peters, J. D., Furlong, M. T., Harrison, M. L., and Geahlen, R. L. (1999). Phosphorylation-and activation-independent association of the tyrosine kinase Syk and the tyrosine kinase substrates Cbl and Vav with tubulin in B-cells. J Biol Chem 274, 1401–1406.

    Article  CAS  PubMed  Google Scholar 

  • Foster, R., Hu, K. Q., Lu, Y., Nolan, K. M., Thissen, J., and Settleman, J. (1996). Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 16, 2689–2699.

    CAS  PubMed  Google Scholar 

  • Fujita, H., Katoh, H., Ishikawa, Y., Mori, K., and Negishi, M. (2002). Rapostlin is a novel effector of Rnd2 GTPase inducing neurite branching. J Biol Chem 277, 45428–45434.

    Article  CAS  PubMed  Google Scholar 

  • Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., Kaibuchi, K. (2002). Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885.

    Article  CAS  PubMed  Google Scholar 

  • Fukata, Y., Itoh, T. J., Kimura, T., Menager, C., Nishimura, T., Shiromizu, T., Watanabe, H., Inagaki, N., Iwamatsu, A., Hotani, H., and Kaibuchi, K. (2002). CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4, 583–591.

    CAS  PubMed  Google Scholar 

  • Gauthier-Rouviere, C., Vignal, E., Meriane, M., Roux, P., Montcourier, P., and Fort, P. (1998). RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs. Mol Biol Cell 9, 1379–1394.

    CAS  PubMed  Google Scholar 

  • Glaven, J. A., Whitehead, I., Bagrodia, S., Kay, R., and Cerione, R. A. (1999). The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J Biol Chem 274, 2279–2285.

    Article  CAS  PubMed  Google Scholar 

  • Gomes, E. R., Jani, S., Gundersen, G.G. (2004). Nuclear Movement by Cdc42-MRCK Regulated Actin-Myosin Flow Establishes MTOC Polarization in Migrating Cells. manuscript submitted.

    Google Scholar 

  • Gonczy, P., Pichler, S., Kirkham, M., and Hyman, A. A. (1999). Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 147, 135–150.

    Article  CAS  PubMed  Google Scholar 

  • Gotta, M., Abraham, M. C., and Ahringer, J. (2001). CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol 11, 482–488.

    Article  CAS  PubMed  Google Scholar 

  • Grill, S. W., Gonczy, P., Stelzer, E. H., and Hyman, A. A. (2001). Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633.

    Article  CAS  PubMed  Google Scholar 

  • Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H., and Hyman, A. A. (2003). The distribution of active force generators controls mitotic spindle position. Science 301, 518–521.

    Article  CAS  PubMed  Google Scholar 

  • Gundersen, G. G. (2002). Microtubule capture: IQGAP and CLIP-170 expand the repertoire. Curr Biol 12, R645–647.

    Article  CAS  PubMed  Google Scholar 

  • Hart, M. J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W. D., Gilman, A. G., Sternweis, P. C., and Bollag, G. (1998). Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280, 2112–2114.

    Article  CAS  PubMed  Google Scholar 

  • Heil-Chapdelaine, R. A., Oberle, J. R., and Cooper, J. A. (2000). The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J Cell Biol 151, 1337–1344.

    Article  CAS  PubMed  Google Scholar 

  • Hirose, K., Kawashima, T., Iwamoto, I., Nosaka, T., and Kitamura, T. (2001). MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody. J Biol Chem 276, 5821–5828.

    Article  CAS  PubMed  Google Scholar 

  • Howard, J., Hyman, A.A. (2003). Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758.

    Article  CAS  PubMed  Google Scholar 

  • Huby, R. D., Carlile, G. W., and Ley, S. C. (1995). Interactions between the protein-tyrosine kinase ZAP-70, the proto-oncoprotein Vav, and tubulin in Jurkat T cells. J Biol Chem 270, 30241–30244.

    Article  CAS  PubMed  Google Scholar 

  • Infante, A. S., Stein, M. S., Zhai, Y., Borisy, G. G., and Gundersen, G. G. (2000). Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J Cell Sci 113, 3907–3919.

    CAS  PubMed  Google Scholar 

  • Jantsch-Plunger, V., Gonczy, P., Romano, A., Schnabel, H., Hamill, D., Schnabel, R., Hyman, A. A., and Glotzer, M. (2000). CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol 149, 1391–1404.

    Article  CAS  PubMed  Google Scholar 

  • Jimbo, T., Kawasaki, Y., Koyama, R., Sato, R., Takada, S., Haraguchi, K., Akiyama, T. (2002). Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol 4, 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Joberty, G., Petersen, C., Gao, L., and Macara, I. G. (2000). The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2, 531–539.

    Article  CAS  PubMed  Google Scholar 

  • Kato, T., Watanabe, N., Morishima, Y., Fujita, A., Ishizaki, T., and Narumiya, S. (2001). Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. J Cell Sci 114, 775–784.

    CAS  PubMed  Google Scholar 

  • Kawamata, T., Taniguchi, T., Mukai, H., Kitagawa, M., Hashimoto, T., Maeda, K., Ono, Y., and Tanaka, C. (1998). A protein kinase, PKN, accumulates in Alzheimer neurofibrillary tangles and associated endoplasmic reticulum-derived vesicles and phosphorylates tau protein. J Neurosci 18, 7402–7410.

    CAS  PubMed  Google Scholar 

  • Kawasaki, Y., Sato, R., and Akiyama, T. (2003). Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol 5, 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Kay, A. J., and Hunter, C. P. (2001). CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr Biol 11, 474–481.

    Article  CAS  PubMed  Google Scholar 

  • Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D., and Borisy, G. G. (1997). Microtubule release from the centrosome. Proc Natl Acad Sci U S A 94, 5078–5083.

    Article  CAS  PubMed  Google Scholar 

  • Keating, T. J., and Borisy, G. G. (1999). Centrosomal and non-centrosomal microtubules. Biol Cell 91, 321–329.

    Article  CAS  PubMed  Google Scholar 

  • Kemphues, K. (2000). PARsing embryonic polarity. Cell 101, 345–348.

    Article  CAS  PubMed  Google Scholar 

  • Khawaja, S., Gundersen, G. G., and Bulinski, J. C. (1988). Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J Cell Biol 106, 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Kirschner, M., and Mitchison, T. (1986). Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342.

    Article  CAS  PubMed  Google Scholar 

  • Kjoller, L., and Hall, A. (1999). Signaling to Rho GTPases. Exp Cell Res 253, 166–179.

    Article  CAS  PubMed  Google Scholar 

  • Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A., and Fuchs, E. (2003). ACF7: an essential integrator of microtubule dynamics. Cell 115, 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Kohno, H., Tanaka, K., Mino, A., Umikawa, M., Imamura, H., Fujiwara, T., Fujita, Y., Hotta, K., Qadota, H., Watanabe, T., et al. (1996). Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. Embo J 15, 6060–6068.

    CAS  PubMed  Google Scholar 

  • Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N., and Borisy, G. G. (2002). Cytoplasmic linker proteins promote microtubule rescue in vivo. J Cell Biol 159, 589–599.

    Article  CAS  PubMed  Google Scholar 

  • Korinek, W. S., Copeland, M. J., Chaudhuri, A., and Chant, J. (2000). Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257–2259.

    Article  CAS  PubMed  Google Scholar 

  • Kozasa, T., Jiang, X., Hart, M. J., Sternweis, P. M., Singer, W. D., Gilman, A. G., Bollag, G., and Sternweis, P. C. (1998). p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280, 2109–2111.

    Article  CAS  PubMed  Google Scholar 

  • Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., and Hahn, K. M. (2000). Localized Rac activation dynamics visualized in living cells. Science 290, 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer, G., Liao, G., and Gundersen, G. G. (1999). Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell 10, 1105–1118.

    CAS  PubMed  Google Scholar 

  • Krendel, M., Zenke, F. T., and Bokoch, G. M. (2002). Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4, 294–301.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, J. R., and Poenie, M. (2002). Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121.

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama, R., Gustus, C., Terada, Y., Uetake, Y., and Matuliene, J. (2002). CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 156, 783–790.

    Article  CAS  PubMed  Google Scholar 

  • Labbe, J. C., Maddox, P. S., Salmon, E. D., and Goldstein, B. (2003). PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr Biol 13, 707–714.

    Article  CAS  PubMed  Google Scholar 

  • Larcher, J. C., Boucher, D., Lazereg, S., Gros, F., and Denoulet, P. (1996). Interaction of kinesin motor domains with alpha-and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J Biol Chem 271, 22117–22124.

    Article  CAS  PubMed  Google Scholar 

  • Lee, L., Klee, S. K., Evangelista, M., Boone, C., and Pellman, D. (1999). Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J Cell Biol 144, 947–961.

    Article  CAS  PubMed  Google Scholar 

  • Lee, L., Tirnauer, J. S., Li, J., Schuyler, S. C., Liu, J. Y., and Pellman, D. (2000). Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T. Y., and Gotlieb, A. I. (2002). Rho and basic fibroblast growth factor involvement in centrosome redistribution and actin microfilament remodeling during early endothelial wound repair. J Vasc Surg 35, 1242–1252.

    Article  PubMed  Google Scholar 

  • Lee, W. L., Oberle, J. R., and Cooper, J. A. (2003). The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J Cell Biol 160, 355–364.

    Article  CAS  PubMed  Google Scholar 

  • Leung, T., Chen, X. Q., Tan, I., Manser, E., and Lim, L. (1998). Myotonic dystrophy kinaserelated Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol Cell Biol 18, 130–140.

    CAS  PubMed  Google Scholar 

  • Li, F., and Higgs, H. N. (2003). The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr Biol 13, 1335–1340.

    Article  CAS  PubMed  Google Scholar 

  • Liakopoulos, D., Kusch, J., Grava, S., Vogel, J., Barral, Y. (2003). Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574.

    Article  CAS  PubMed  Google Scholar 

  • Liao, G., Gundersen, G.G. (1998). Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. J Biol Chem 273, 9797–9803.

    Article  CAS  PubMed  Google Scholar 

  • Lin, D., Edwards, A. S., Fawcett, J. P., Mbamalu, G., Scott, J. D., and Pawson, T. (2000). A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2, 540–547.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B. P., Chrzanowska-Wodnicka, M., and Burridge, K. (1998). Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTPbinding protein Rho. Cell Adhes Commun 5, 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Luo, L. (2000). Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1, 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa, H., Usui, T., Knop, M., Schiebel, E. (2003). Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO J 22, 438–449.

    Article  CAS  PubMed  Google Scholar 

  • McNally, F. J., and Thomas, S. (1998). Katanin is responsible for the M-phase microtubulesevering activity in Xenopus eggs. Mol Biol Cell 9, 1847–1861.

    CAS  PubMed  Google Scholar 

  • McNeil, R. S., Swann, J. W., Brinkley, B. R., and Clark, G. D. (1999). Neuronal cytoskeletal alterations evoked by a platelet-activating factor (PAF) analogue. Cell Motil Cytoskeleton 43, 99–113.

    Article  CAS  PubMed  Google Scholar 

  • Miller, R. K., and Rose, M. D. (1998). Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J Cell Biol 140, 377–390.

    Article  CAS  PubMed  Google Scholar 

  • Miller, R. K., Cheng, S. C., and Rose, M. D. (2000). Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol Biol Cell 11, 2949–2959.

    CAS  PubMed  Google Scholar 

  • Mimori-Kiyosue, Y., and Tsukita, S. (2003). "Search-and-capture" of microtubules through plus-end-binding proteins (+TIPs). J Biochem (Tokyo) 134, 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Mimori-Kiyosue Y, Shiina N, Tsukita S (2000). Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 148, 505–518.

    Article  CAS  PubMed  Google Scholar 

  • Mishima, M., Kaitna, S., and Glotzer, M. (2002). Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2, 41–54.

    Article  CAS  PubMed  Google Scholar 

  • Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A., and Hahn, K. M. (2004). Activation of endogenous Cdc42 visualized in living cells. Science 305, 1615–1619.

    Article  CAS  PubMed  Google Scholar 

  • Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H., and Nelson, W. J. (1996). The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 134, 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Niethammer, P., Bastiaens, P., and Karsenti, E. (2004). Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 303, 1862–1866.

    Article  CAS  PubMed  Google Scholar 

  • Nikolic, M. (2002). The role of Rho GTPases and associated kinases in regulating neurite outgrowth. Int J Biochem Cell Biol 34, 731–745.

    Article  CAS  PubMed  Google Scholar 

  • Nobes, C. D., Lauritzen, I., Mattei, M. G., Paris, S., Hall, A., and Chardin, P. (1998). A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141, 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Ory, S., Destaing, O., and Jurdic, P. (2002). Microtubule dynamics differentially regulates Rho and Rac activity and triggers Rho-independent stress fiber formation in macrophage polykaryons. Eur J Cell Biol 81, 351–362.

    Article  CAS  PubMed  Google Scholar 

  • Ovechkina, Y., and Wordeman, L. (2003). Unconventional motoring: an overview of the Kin C and Kin I kinesins. Traffic 4, 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E., and Gundersen, G. G. (2004). Localized stabilization of microtubules by integrin-and FAK-facilitated Rho signaling. Science 303, 836–839.

    Article  CAS  PubMed  Google Scholar 

  • Palazzo, A. F., Cook, T.A., Alberts, A.S., Gundersen, G.G. (2001a). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3, 723–729.

    Article  CAS  PubMed  Google Scholar 

  • Palazzo, A. F., Joseph, H.L., Chen, Y.J., Dujardin, D.L., Alberts, A.S., Pfister, K.K., Vallee, R.B., Gundersen, G.G. (2001b). Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11, 1536–1541.

    Article  CAS  PubMed  Google Scholar 

  • Pruyne, D., Evangelista, M., Yang, C., Bi, E., Zigmond, S., Bretscher, A., and Boone, C. (2002). Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, R. G., Abo, A., and Steven Martin, G. (2000). A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation. Curr Biol 10, 697–707.

    Article  CAS  PubMed  Google Scholar 

  • Ren, X. D., Kiosses, W. B., and Schwartz, M. A. (1999). Regulation of the small GTPbinding protein Rho by cell adhesion and the cytoskeleton. Embo J 18, 578–585.

    Article  CAS  PubMed  Google Scholar 

  • Ren, Y., Li, R., Zheng, Y., and Busch, H. (1998). Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 273, 34954–34960.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, S. L., Rogers, G. C., Sharp, D. J., and Vale, R. D. (2002). Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158, 873–884.

    Article  CAS  PubMed  Google Scholar 

  • Sagot, I., Rodal, A. A., Moseley, J., Goode, B. L., and Pellman, D. (2002). An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 4, 626–631.

    CAS  PubMed  Google Scholar 

  • Salmon, E. D., Leslie, R. J., Saxton, W. M., Karow, M. L., and McIntosh, J. R. (1984). Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching. J Cell Biol 99, 2165–2174.

    Article  CAS  PubMed  Google Scholar 

  • Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M., and McIntosh, J. R. (1984). Tubulin dynamics in cultured mammalian cells. J Cell Biol 99, 2175–2186.

    Article  CAS  PubMed  Google Scholar 

  • Sayas, C. L., Avila, J., and Wandosell, F. (2002). Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim Biophys Acta 1582, 144–153.

    CAS  PubMed  Google Scholar 

  • Schmidt, J. T., Morgan, P., Dowell, N., and Leu, B. (2002). Myosin light chain phosphorylation and growth cone motility. J Neurobiol 52, 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, S. Q., and Bowerman, B. (2003). Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu Rev Genet 37, 221–249.

    Article  CAS  PubMed  Google Scholar 

  • Schuyler, S. C., and Pellman, D. (2001). Microtubule "plus-end-tracking proteins": The end is just the beginning. Cell 105, 421–424.

    Article  CAS  PubMed  Google Scholar 

  • Sells, M. A., Pfaff, A., and Chernoff, J. (2000). Temporal and spatial distribution of activated Pak1 in fibroblasts. J Cell Biol 151, 1449–1458.

    Article  CAS  PubMed  Google Scholar 

  • Sheeman, B., Carvalho, P., Sagot, I., Geiser, J., Kho, D., Hoyt, M.A., Pellman, D. (2003). Determinants of S. cerevisiae Dynein Localization and Activation. Implications for the Mechanism of Spindle Positioning. Curr Biol 13, 364–372.

    Article  CAS  PubMed  Google Scholar 

  • Skop, A. R., and White, J. G. (1998). The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr Biol 8, 1110–1116.

    Article  CAS  PubMed  Google Scholar 

  • Somers, W. G., and Saint, R. (2003). A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev Cell 4, 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Stowers, L., Yelon, D., Berg, L. J., and Chant, J. (1995). Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc Natl Acad Sci U S A 92, 5027–5031.

    CAS  PubMed  Google Scholar 

  • Sun, D., Leung, C. L., and Liem, R. K. (2001). Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J Cell Sci 114, 161–172.

    CAS  PubMed  Google Scholar 

  • Taniguchi, T., Kawamata, T., Mukai, H., Hasegawa, H., Isagawa, T., Yasuda, M., Hashimoto, T., Terashima, A., Nakai, M., Mori, H., et al. (2001). Phosphorylation of tau is regulated by PKN. J Biol Chem 276, 10025–10031.

    Article  CAS  PubMed  Google Scholar 

  • Tian, L., Nelson, D. L., and Stewart, D. M. (2000). Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. J Biol Chem 275, 7854–7861.

    Article  CAS  PubMed  Google Scholar 

  • Tirnauer, J. S., O'Toole, E., Berrueta, L., Bierer, B. E., and Pellman, D. (1999). Yeast Bim1p promotes the G1-specific dynamics of microtubules. J Cell Biol 145, 993–1007.

    Article  CAS  PubMed  Google Scholar 

  • Tzima, E., Kiosses, W. B., del Pozo, M. A., and Schwartz, M. A. (2003). Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. J Biol Chem 278, 31020–31023.

    Article  CAS  PubMed  Google Scholar 

  • van Horck, F. P., Ahmadian, M. R., Haeusler, L. C., Moolenaar, W. H., and Kranenburg, O. (2001). Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J Biol Chem 276, 4948–4956.

    Article  PubMed  Google Scholar 

  • Vicente-Manzanares, M., Cabrero, J. R., Rey, M., Perez-Martinez, M., Ursa, A., Itoh, K., and Sanchez-Madrid, F. (2002). A role for the Rho-p160 Rho coiled-coil kinase axis in the chemokine stromal cell-derived factor-1alpha-induced lymphocyte actomyosin and microtubular organization and chemotaxis. J Immunol 168, 400–410.

    CAS  PubMed  Google Scholar 

  • Vignal, E., Blangy, A., Martin, M., Gauthier-Rouviere, C., and Fort, P. (2001). Kinectin is a key effector of RhoG microtubule-dependent cellular activity. Mol Cell Biol 21, 8022–8034.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., and Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1, 136–143.

    Article  CAS  PubMed  Google Scholar 

  • Waterman-Storer, C. M., and Salmon, E. D. (1997). Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139, 417–434.

    Article  CAS  PubMed  Google Scholar 

  • Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K., and Salmon, E. D. (1999). Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol 1, 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Webster, D. R., Gundersen, G. G., Bulinski, J. C., and Borisy, G. G. (1987). Differential turnover of tyrosinated and detyrosinated microtubules. Proc Natl Acad Sci U S A 84, 9040–9044.

    CAS  PubMed  Google Scholar 

  • Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N., Morris, E. J., Chen, M., Wallar, B. J., Alberts, A. S., and Gundersen, G. G. (2004). EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 6, 820–830.

    Article  CAS  PubMed  Google Scholar 

  • Westermann, S., and Weber, K. (2003). Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4, 938–947.

    Article  CAS  PubMed  Google Scholar 

  • Wherlock, M., and Mellor, H. (2002). The Rho GTPase family: a Racs to Wrchs story. J Cell Sci 115, 239–240.

    CAS  PubMed  Google Scholar 

  • Wittmann, T., Bokoch, G. M., and Waterman-Storer, C. M. (2003). Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol 161, 845–851.

    Article  CAS  PubMed  Google Scholar 

  • Wittmann, T., Bokoch, G. M., and Waterman-Storer, C. M. (2004). Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J Biol Chem 279, 6196–6203.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda, S., Oceguera-Yanez, F., Kato, T., Okamoto, M., Yonemura, S., Terada, Y., Ishizaki, T., and Narumiya, S. (2004). Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428, 767–771.

    Article  CAS  PubMed  Google Scholar 

  • Yin, H., Pruyne, D., Huffaker, T. C., and Bretscher, A. (2000). Myosin V orientates the mitotic spindle in yeast. Nature 406, 1013–1015.

    Article  CAS  PubMed  Google Scholar 

  • Yu, W., Centonze, V. E., Ahmad, F. J., and Baas, P. W. (1993). Microtubule nucleation and release from the neuronal centrosome. J Cell Biol 122, 349–359.

    Article  CAS  PubMed  Google Scholar 

  • Zenke, F. T., Krendel, M., DerMardirossian, C., King, C. C., Bohl, B. P., and Bokoch, G. M. (2004). p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J Biol Chem 279, 18392–18400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Eng, C.H., Gundersen, G.G. (2005). Rho Proteins and Microtubules. In: Manser, E. (eds) RHO Family GTPases. Proteins and Cell Regulation, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3462-8_12

Download citation

Publish with us

Policies and ethics