Skip to main content

Using Watershed and Multimodal Data for Vessel Segmentation: Application to the Superior Sagittal Sinus

  • Conference paper

Part of the book series: Computational Imaging and Vision ((CIVI,volume 30))

Abstract

Magnetic resonance angiography (MRA) provides 3-dimensional data of vascular structures by finding the flowing blood signal. Classically, algorithms dedicated to vessel segmentation detect the cerebral vascular tree by only seeking the high intensity blood signal in MRA. We propose here to use both cerebral MRA and MRI and to integrate a priori anatomical knowledge to guide the segmentation process. The algorithm presented here uses mathematical morphology tools (watershed segmentation and grey-level operators) to carry out a simultaneous segmentation of both blood signal in MRA and blood and wall signal in MRI. It is dedicated to the superior sagittal sinus segmentation but similar strategies could be considered for segmentation of other vascular structures. The method has been performed on 6 cases composed of both MRA and MRI. The results have been validated and compared to other results obtained with a region growing algorithm. They tend to prove that this method is reliable even when the vascular signal is inhomogeneous or contains artefacts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. Aylward and E. Bullit. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Transactions on Medical Imaging, 21:61–75, 2002.

    Article  PubMed  Google Scholar 

  2. S. Beucher and F Meyer. The morphological approach to segmentation: the watershed transformation, chapter 12, pages 433–481. E.R. Dougherty, Ed. Marcel Dekker, 1993.

    Google Scholar 

  3. H.E. Cline, D.R. Thedens, C.H. Meyer, D.G. Nishimura, T.K. Foo, and S. Ludke. Combined connectivity and a grey-level morphological filter in magnetic resonance coronary angiography. Magnetic Resonance in Medicine, 43:892–995, 2000.

    PubMed  Google Scholar 

  4. Y.P Du and D.L. Parker. Vessel enhancement filtering in three-dimensional angiograms using long-range signal correlation. Journal of Magnetic Resonance Imaging, 7:447–450, 1997.

    PubMed  Google Scholar 

  5. C.L. Dumoulin and H.R. Hart. Magnetic resonance angiography. Radiology, 161:717–720, 1986.

    PubMed  Google Scholar 

  6. N. Flasque, M. Desvignes, J.M. Constans, and M. Revenu. Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Medical Image Analysis, 5:173–183, 2001.

    Article  PubMed  Google Scholar 

  7. G. Gerig, T. Koller, G Székely, C. Brechblihler, and O. Küibler. Symbolic description of 3-D structures applied to cerebral vessel tree obtained from MR angiography volume data. In IPMI’93, volume 687 of LNCS, pages 94–111, 1993.

    Google Scholar 

  8. N. Passat, C. Ronse, J. Baruthio, J.-P. Armspach, C. Maillot, and C. Jahn. Atlas-based method for segmentation of cerebral vascular trees from phase-contrast magnetic resonance angiography. In SPIE Image Processing 2004, volume 5370, pages 420–431, 2004.

    Google Scholar 

  9. A.R. Sanderson, D.L. Parker, and T.C. Henderson. Simultaneous segmentation of MR and X-ray angiograms for visualization of cerebral vascular anatomy. In VIP’93, 1993.

    Google Scholar 

  10. PJ. Yim, P.L. Choyke, and R.M. Summers. Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Transactions on Medical Imaging, 19:568–576, 2000.

    Article  PubMed  Google Scholar 

  11. C. Zahlten, H. Jürgens, C.J.G. Evertsz, R. Leppek, H.-O. Peitgen, and K.J. Klose. Portal vein reconstruction based on topology. European Journal of Radiology, 19:96–100, 1995.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Passat, N., Ronse, C., Baruthio, J., Armspach, JP., Foucher, J. (2005). Using Watershed and Multimodal Data for Vessel Segmentation: Application to the Superior Sagittal Sinus. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_38

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics