Skip to main content

The Musculo-Skeletal System in Space

  • Chapter
  • 1232 Accesses

Part of the book series: The Space Technology Library ((SPTL,volume 17))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  • Arnaud SB, Harper JS, Navidi M (1995) Mineral distribution in rat skeletons after exposure to a microgravity model. Journal of Gravitational Physiology 2: 115–116

    Google Scholar 

  • Baldwin KM et al. (1996) Musculoskeletal adaptations to weightlessness and development of effective countermeasures. Medicine and Science in Sports and Exercise 10: 1247–1253

    Google Scholar 

  • Ballard RW, Connolly JP (1990) US/USSR joint research in space biology and medicine on Cosmos biosatellites. FASEB Journal 4: 5–9

    Google Scholar 

  • Capetanaki Y, Milner DJ, Weitzer G (1997) Desmin in muscle formation and maintenance: Knockous and consequences. Cell Structure and Function 22: 103–116

    Article  Google Scholar 

  • Convertino VA (1991) Neuromuscular aspects in development of exercise countermeasures. The Physiologist 34: S125–S128

    Google Scholar 

  • De-Doncker L, Picquet F, Falempin M (2000) Effects of cutaneous receptor stimulation on muscular atrophy developed in hindlimb unloading condition. Journal of Applied Physiology 89: 2344–2351

    Google Scholar 

  • Di Prampero PE, Narici MV, Tesch PA (2001) Muscles in space. In: A World Without Gravity. Fitton B, Battrick B (eds) Noordwijk, NL: ESA Publications Division, SP-1251, pp 69–82

    Google Scholar 

  • Edgerton VR et al. (1995) Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. Journal of Applied Physiology 78: 1733–1739

    Google Scholar 

  • Fleisch H, Russel RG, Simpson B, Muhlbauer RC (1969) Prevention of a diphosphonate of immobilization “osteoporosis” in rats. Nature 223:211–212

    Article  ADS  Google Scholar 

  • Hattner RS, McMillan DE (1968) Influence of weightlessness upon the skeleton: A review. Aerospace Medicine 39: 849–855

    Google Scholar 

  • Hulley SB et al. (1971) The effect of supplemental oral phosphate on the bone mineral changes during prolonged bed rest. Journal of Clinical Investigation 50: 2506–2518

    Article  Google Scholar 

  • Leach CS, Rambaut PC (1977) Biochemical responses of the Skylab crewmen: An overview. In: Biomedical Results from Skylab. Johnston RS, Dietlein LF (eds) Washington: DC. National Aeronautics and Space Administration, NASA SP-377, Chapter 23, pp 204–216

    Google Scholar 

  • LeBlanc A et al. (1996) Bone mineral and lean tissue loss after long duration spaceflight. Journal of Bone and Mineral Research 11: 323–332

    Google Scholar 

  • Lujan BF, White RJ (1994) Human Physiology in Space. Teacher’s Manual. A Curriculum Supplement for Secondary Schools. Houston, TX: Universities Space Research Association

    Google Scholar 

  • McCormick, Donald B (2000) Nutritional recommendations for Spaceflight. In Nutrition in Spaceflight and Weightlessness Models. Lane HW, Schoeller DA (eds) CRC Press, Boca Raton, Florida, pp 253–259

    Google Scholar 

  • Meunier Y, Chapuy MC, Delmas P (1987) Intravenous disodium etidronate therapy in Paget’s disease of bone and hypercalcemia of malignancy. American Journal of Medicine 82: S71–S78

    Article  Google Scholar 

  • Morey-Holton ER, Globus RK (1998) Hind limb-unloading of growing rats: a model for predicting skeletal changes during spaceflight. Bone 22:835–885.

    Google Scholar 

  • Nicogossian AE, Parker JF (1982) Space Physiology and Medicine. Washington, DC: US Government Printing Office, NASA SP-447

    Google Scholar 

  • Oganov VS et al. (1992) Bone mineral density in cosmonauts after 4.5–6 month long flights aboard Orbital Station Mir. Aerospace and Environmental Medicine 5: 20–24

    Google Scholar 

  • Picquet F, Falempin M (2003) Compared effects of hindlimb unloading versus terrestrial deafferentation on muscular properties of the rat soleus. Experimental Neurology 182: 186–194

    Article  Google Scholar 

  • Riley DA et al. (1990) Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats. FASEB Journal 4: 84–91

    Google Scholar 

  • Riley DA et al. (1996) In-flight and postflight changes in skeletal muscles of SLS-1 and SLS-2 spaceflown rats. Journal of Applied Physiology 81:133–144

    Google Scholar 

  • Rittweger J, Gunga HC, Felsenberg D, Kirsch KA (1999) Muscle and bone—Aging and space. Journal of Gravitational Physiology 6: 133–135

    Google Scholar 

  • Roer RD, Dillaman R.M (1990) Bone growth and calcium balance during simulated weightlessness in the rat. Journal of Applied Physiology 68:13–20

    Google Scholar 

  • Rubin C, Turner S, Bain S, Mallinckrodt C, McLeod K (2001) Extremely low level mechanical signals are anabolic to trabecular bone. Nature 412:603–604

    Article  ADS  Google Scholar 

  • Rubin C, Turner AS, Mallinckrodt C, Jerome C, McLeod K, Bain S (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30: 445–52

    Article  Google Scholar 

  • Ruml LA, Dubois SK, Roberts ML, Pak CYC (1995) Prevention of hypercalciuria and stone-forming propensity during prolonged bedrest by alendronate. Journal of Bone and Mineral Research 10: 655–662

    Article  Google Scholar 

  • Schneider VS, LeBlanc A, Rambaut P (1989) Bone and mineral metabolism. In: Space Physiology and Medicine. Nicogossian A, Huntoon C, Pool S (eds) Philadelphia, PA: Lea & Febiger, pp. 214–221

    Google Scholar 

  • Schneider V, LeBlanc A, Huntoon C (1993) Prevention of spaceflight induced soft tissue calcification and disuse osteoporosis. Acta Astronautica 29:139–140

    Article  Google Scholar 

  • Stein TP, Leskiw MJ, Schluter MD (1996) Diet and nitrogen metabolism during spaceflight on the Shuttle. Journal of Applied Physiology 81:82–97

    Google Scholar 

  • Thornton WE, Rummel JA (1977) Muscular deconditioning and its prevention in spaceflight. In: Johnston RF, Dietlein LF (eds) Biomedical Results from Skylab. Washington, DC: US Government Printing Office, NASA SP-377, Chapter 21, pp 191–197

    Google Scholar 

  • Tipton CM (1996) Animal models and their importance to human physiological responses in microgravity. Medicine and Science in Sports and Exercise 28: S94–S100

    Google Scholar 

  • Tischler ME et al. (1993) Spaceflight on STS-48 and Earth-based unweighting produce similar effects on skeletal muscle of young rats. Journal of Applied Physiology 74: 2161–2165

    Google Scholar 

  • Titze J et al. (2002) Long-term sodium balance in humans in a terrestrial space station simulation study. American Journal of Kidney Diseases 40: 508–516

    Article  Google Scholar 

  • Vico L, Novikov VE, Very JM, Alexandre C (1991) Bone histomorphometric comparison of rat tibial metaphysis after 7-day hindlimb unloading vs. 7-day spaceflight. Aviation, Space and Environmental Medicine 62: 26–31

    Google Scholar 

  • Vico L et al. (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355: 1607–1611

    Article  Google Scholar 

  • Walton K (1998) Postnatal development under conditions of simulated weightlessness and spaceflight. Brain Research Reviews 28: 25–34

    Article  Google Scholar 

Additional Documentation

  • Integrative Physiology in Space (2000) European Journal of Physiology 441, Number 2–3, Supplement

    Google Scholar 

  • International Workshop on Bone Research in Space (1999) Bone, Official Journal of the International Bone and Mineral Society, Volume 22, Number 5, Supplement

    Google Scholar 

  • Muscle Research in Space: International Workshop (1997) International Journal of Sports Medicine, Volume 18, Supplement 4: S255–S334

    Google Scholar 

  • Review of NASA’s Biomedical Research Program (2000) Committee on Space Biology and Medicine, Space Studies Board, National Research Council. National Academy Press

    Google Scholar 

  • Space Research. NASA Marshall Spaceflight Center (2002) Office of Biological and Physical Research. Volume 1, Number 4, September 2002

    Google Scholar 

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). The Musculo-Skeletal System in Space. In: Fundamentals of Space Medicine. The Space Technology Library, vol 17. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3434-2_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3434-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3246-2

  • Online ISBN: 978-1-4020-3434-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics