Skip to main content

The Neuro-Sensory System in Space

  • Chapter
Book cover Fundamentals of Space Medicine

Part of the book series: The Space Technology Library ((SPTL,volume 17))

  • 1206 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  • Bloomberg JJ, Peters BT, Smith S.L, Huebner WP, Reschke MF (1997) Locomotor head-trunk coordination strategies following spaceflight. Journal of Vestibular Research 7: 161–177

    Article  Google Scholar 

  • Bloomberg JJ et al. (1999) Effects of spaceflight on locomotor control. In Extended Duration Orbiter Medical Project. Final Report 1989–1995. Sawin CF, Taylor GR (eds) Houston, TX: NASA SP-1999-534, Chapter 5.5

    Google Scholar 

  • Clément G (1998) Alteration of eye movements and motion perception in microgravity. Brain Research Reviews 28: 161–172

    Article  Google Scholar 

  • Clément G, Lestienne F (1988) Adaptive modifications of postural attitude in conditions of weightlessness. Experimental Brain Research 72: 381–389

    Article  Google Scholar 

  • Clément G, Reschke MF (1996) Neurosensory and sensory-motor functions. In: Biological and Medical Research in Space: An Overview of Life Sciences Research in Microgravity. Moore D, Bie P, Oser H (eds), Heidelberg: Springer-Verlag, Chapter 4, pp 178–258

    Google Scholar 

  • Clément G, Moore S, Raphan T, Cohen B (2001) Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during spaceflight. Experimental Brain Research 138: 410–418

    Article  Google Scholar 

  • Clément G et al. (2003) Perception of the Spatial Vertical during Centrifugation and Static Tilt. In: The Neurolab Mission: Neuroscience Research in Space. Buckey JC, Homick JL (eds) Johnson Space Center, Houston TX: U.S. Government Printing Office, NASA SP-2003-535, pp 5–10

    Google Scholar 

  • Crampton GH (ed) Motion and Space Sickness. Boca Raton: CRC Press, 1990

    Google Scholar 

  • Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF (1988) Space motion sickness during 24 flights of the Space Shuttle. Aviation Space Environmental Medicine 59: 1185–1189

    Google Scholar 

  • Godwin R (1999) Apollo 12 NASA Mission Reports. Burlington, Canada: Apogee Books, CG Publishing Inc.

    Google Scholar 

  • Gorgiladze GI, Bryanov II (1989) Space motion sickness. Space Biology and Aerospatial Medicine (in Russian) 23: 4–14

    Google Scholar 

  • Gurfinkel VS, Lestienne F, Levik YS, Popov KE, Lefort L (1993) Egocentric references and human spatial orientation in microgravity. II. Body-centered coordinates in the task of drawing ellipses with prescribed orientation. Experimental Brain Research 95: 343–348

    Article  Google Scholar 

  • Homick JL, Miller EF II (1975) Apollo flight crew vestibular assessment. In: Biomedical Results of Apollo. Johnston RS, Dietlein LF, Berry CA (eds) Washington DC: U.S. Government Printing Office, NASA SP-368, pp 323–340

    Google Scholar 

  • Jones JA (1997) Angular momentum conservation: Astronauts at play. The College of Wooster, Junior Thesis, Physics Department. Available at: http://www.wooster.edu/physics/JrIS/Files

    Google Scholar 

  • Lackner J, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Experimental Brain Research 130: 2–6

    Article  Google Scholar 

  • Lathan C, Wang Z, Clément G (2000) Changes in the vertical size of a three-dimensional object drawn in weightlessness by astronauts. Neuroscience Letters 295: 37–40

    Article  Google Scholar 

  • Léone G (1998) The effect of gravity on human recognition of disoriented objects. Brain Research Reviews 28: 203–214

    Article  Google Scholar 

  • McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws? Nature Neuroscience 4: 693–694

    Article  Google Scholar 

  • Mittelstaedt H, Glasauer S (1993) Crucial effects of weightlessness on human orientation. Journal of Vestibular Research 3: 307–314

    Google Scholar 

  • Money KE (1990) Motion sickness and evolution. In: Crampton G (ed) Motion and Space Sickness. Boca Raton, FL: CRC Press

    Google Scholar 

  • Oman CM, Lichtenberg BK, Money KE (1990) Space motion sickness monitoring experiment: Spacelab 1. In: Motion and Space Sickness. Crampton GH (ed) Boca Raton, FL: CRC Press, pp 217–246

    Google Scholar 

  • Paloski WH, Black FO, Reschke MF, Calkins DS, Shupert C (1993) Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. American Journal of Otology 14: 9–17

    Google Scholar 

  • Parker DE, Reschke MF, Arrott AP, Homick JL, Lichtenberg BK (1985) Otolith tilt-translation reinterpretation following prolonged weightlessness: implications for pre-flight training. Aviation Space Environmental Medicine 56: 601–606

    Google Scholar 

  • Pettit D (2003) Expedition Six Space Chronicles. Available at http://spaceflight.nasa.gov/station/crew/exp6/spacechronicles.html

    Google Scholar 

  • Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. 1. Normal subjects. Experimental Brain Research 82: 97–106

    Article  Google Scholar 

  • Ross HE, Brodie EE, Benson AJ (1986) Mass-discrimination in weightlessness and readaptation to earth’s gravity. Experimental Brain Research 64: 358–366

    Article  Google Scholar 

  • Ross MD, Tomko DL (1998) Effects of gravity on vestibular neural development. Brain Research Reviews 28: 44–51

    Article  Google Scholar 

  • Thornton WE, Biggers WP, Thomas WG, Pool SL, Thagard NE (1985) Electronystagmography and audio potentials in spaceflight. Laryngoscope 95: 924–932

    Article  Google Scholar 

  • Watt DGD (1997) Pointing at memorized targets during prolonged microgravity. Aviation, Space and Environmental Medicine 68: 99–103

    Google Scholar 

  • Watt DGD (2001) Background Material On H-REFLEX Experiment. Available at: http:/space.gc.ca/asc/eng/csa_sectors/space_science/life_sciences/h-reflex.asp

    Google Scholar 

  • Young LR, Oman CM, Watt DGD, Money KE, Lichtenberg BK, Kenyon RV, Arrott AP (1986) MIT/Canadian vestibular experiments on the Spacelab-1 mission: 1. Sensory adaptation to weightlessness and readaptation to one-g: an overview. Experimental Brain Research 64: 291–298

    Google Scholar 

Additional Documentation

  • Clément G, Droulez J (1983) Microgravity as an Additional Tool for Research in Human Physiology with Emphasis on Sensori-Motor Systems. Noordwijk, NL: European Space Agency Publication Division, ESA BR-15

    Google Scholar 

  • Clément G (2001) The human sensory and balance system. In: A World Without Gravity. Fitton B, Battrick B (eds) Noordwijk, NL: European Space Agency Publication Division, ESA SP-1251, pp 93–111

    Google Scholar 

  • Crampton G (ed) (1990) Motion and Space Sickness. Boca Raton, FL: CRC Press

    Google Scholar 

  • International Workshop on Human Factors in Space (2000) Aviation Space Environmental Medicine 71, No. 9, Section II, Supplement

    Google Scholar 

  • Man-Systems Integration Standards (1995) Revision B, Volume 1, NASASTD-3000. Houston, TX: National Aeronautics and Space Administration

    Google Scholar 

  • Space Neuroscience Research (1998) Brain Research Reviews, Volume 28, Numbers 1 and 2, Special Issue

    Google Scholar 

  • The Neurolab Mission: Neuroscience Research in Space (2003) Buckey JC, Homick JL (eds) Johnson Space Center, Houston TX: U.S. Government Printing Office, NASA SP-2003-535

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). The Neuro-Sensory System in Space. In: Fundamentals of Space Medicine. The Space Technology Library, vol 17. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3434-2_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3434-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3246-2

  • Online ISBN: 978-1-4020-3434-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics