Skip to main content

GAMMA RAY BURSTS AND DELAYED QUARK-DECONFINEMENT

  • Conference paper
Book cover Superdense QCD Matter and Compact Stars

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 197))

  • 483 Accesses

Abstract

We describe a new model, proposed by Berezhiani et al. (2003), which is able to explain how a gamma-ray burst (GRB) can take place days or years after a supernova explosion. We show that above a threshold value of the gravitational mass a pure hadronic star (“neutron star”) is metastable to the conversion into a quark star (hybrid star or strange star), i.e. a star made at least in part of decon-fined quark matter. The stellar conversion process can be delayed if finite size effects at the interface between hadronic and deconfined quark matter phases are taken into account. A huge amount of energy, on the order of 1052 − 1053 ergs, is released during the conversion process and can produce a powerful gammaray burst. The delay between the supernova explosion generating the metastable neutron star and the new collapse can explain the delay inferred in GRB 990705 and in GRB 011211. Next, we explore the consequences of the metastability of “massive” neutron stars and of the existence of stable compact quark stars on the concept of limiting mass of compact stars. Finally, we discuss the implications of the present scenario on the interpretation of the stellar mass and radius extracted from the spectra of several X-ray compact sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcock, C., Farhi, E., & Olinto, A. 1986, ApJ 310, 261.

    Article  ADS  Google Scholar 

  2. Amati, L. et al., 2000, Science, 290, 953.

    Article  ADS  Google Scholar 

  3. Antonelli, L.A., et al., 2000, ApJ, 545, L39.

    Article  ADS  Google Scholar 

  4. Berezhiani, Z., Bombaci, I., Drago, A., Frontera, F., & Lavagno, A., 2003, ApJ, 586, 1250.

    Article  ADS  Google Scholar 

  5. Bignami, G.F., Carvero, P.A., De Luca, A., & Mereghetti, S., 2003, Nature, 423, 725.

    Article  ADS  Google Scholar 

  6. Bloom, J.S. et al., 1999, Nature, 401, 453.

    Article  ADS  Google Scholar 

  7. Bodmer, A.R., 1971, Phys. Rev. D, 4, 1601.

    Article  ADS  Google Scholar 

  8. Bombaci, I., 1997, Phys. Rev. C, 55, 1587.

    Article  ADS  Google Scholar 

  9. Bombaci, I., 2003, astro-ph/0307522.

    Google Scholar 

  10. Bombaci, I., Parenti, I., & Vidaña, I. (2003) Astrophys.J.614:314–325.

    Article  ADS  Google Scholar 

  11. Bombaci, I., & Datta, B., 2000, ApJ, 530, L69.

    Article  ADS  Google Scholar 

  12. Butler N.R., et al., 2003, ApJ 597, 1010.

    Article  ADS  Google Scholar 

  13. Cheng, K.S., Dai, Z.G., Wai, D.M., & Lu, T., 1998, Science, 280, 407.

    Article  ADS  Google Scholar 

  14. Cottam, J., Paerels, F., & Mendez, M. 2002, Nature, 420, 51.

    Article  ADS  Google Scholar 

  15. Dey, M., Bombaci, I., Dey, J., Ray, S., & Samanta, B.C. 1998, Phys. Lett. B, 438, 123; erratum 1999, Phys. Lett. B, 467, 303.

    Google Scholar 

  16. Datta, B., Thampan, A.V., & Bombaci, I. 1998, A& A, 334 (1998) 943.

    Google Scholar 

  17. Dermer, C.D. 2001, Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany (7–15 August 2001). astro-ph/0202254.

    Google Scholar 

  18. Drake, J.J., et al., 2002, ApJ, 572, 996.

    Article  ADS  Google Scholar 

  19. Farhi, E., & Jaffe, R.L., 1984, Phys. Rev. D, 30, 2379.

    Article  ADS  Google Scholar 

  20. Fender, R., et al. 2004, Nature, 427, 222.

    Article  ADS  Google Scholar 

  21. Frayl, D.A. et al., 2001, ApJ 562, L55.

    Article  ADS  Google Scholar 

  22. Glendenning, N.K 1992, Phys. Rev. D, 46, 1274.

    Article  ADS  Google Scholar 

  23. Glendenning, N.K., 1996, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, Springer Verlag.

    Google Scholar 

  24. Glendenning, N.K., & Moszkowski, S.A. 1991, Phys. Rev. Lett., 67, 2414.

    Article  ADS  Google Scholar 

  25. Haensel, P., Zdunik, J.L. & Schaefer, R. 1986, A&A, 160, 121.

    ADS  Google Scholar 

  26. Haensel, P. 2003, Equation of state of dense matter and maximum mass of neutron stars, in Final Stages of Stellar Evolution, Ed. C. Motch and J.-M. Hameury, EAS Publications Series 7, 249.

    Google Scholar 

  27. Heiselberg, H., Pethick, C.J., & Staubo, E.F. 1993, Phys. Rev. Lett., 70, 1355.

    Article  ADS  Google Scholar 

  28. Hjorth, J. et al, 2003, Nature, 423, 847.

    Article  ADS  Google Scholar 

  29. Iida, K., & Sato, K. 1997, Prog. Theor. Phys., 1, 277: 1998, Phys. Rev. C, 58, 2538.

    Google Scholar 

  30. Kaplan, D.L., van Kerkwijk, M.H, & Anderson, J. 2002, ApJ, 571, 447.

    Article  ADS  Google Scholar 

  31. Lazzati, D., Ghisellini, G., Amati, L., Frontera, F., Vietri, M., & Stella, L. 2001, ApJ, 556, 471.

    Article  ADS  Google Scholar 

  32. Li, X.–D., Bombaci, I., Dey, M., Dey J., & van den Heuvel, E.P.J. 1999a, Phys. Rev. Lett., 83, 3776.

    Article  ADS  Google Scholar 

  33. Li, X.–D., Ray, S., Dey, J., Dey, M., & Bombaci, I. 1999b, ApJ, 527, L51.

    Article  ADS  Google Scholar 

  34. Lifshitz, I. M., & Kagan, Y. 1972, Sov. Phys. JETP, 35, 206.

    ADS  Google Scholar 

  35. Lipkin, Y.M. 2003, Astrophys.J.606:381–394.

    Article  ADS  Google Scholar 

  36. Lugones, G., Ghezzi, C.R., de Gouveia Dal Pino E.M., & Horvath, J.E., 2002, ApJ, 581, L101.

    Article  ADS  Google Scholar 

  37. Madsen, J. 1993, Phys. Rev. Lett., 70, 391.

    Article  ADS  Google Scholar 

  38. Madsen, J. 1999, Lectures Notes in Physics Vol. 500, Springer Verlag, 162.

    Google Scholar 

  39. Oppenheimer, J.R., & Volkoff, G.M. 1939, Phys. Rev., 55, 374.

    Article  ADS  MATH  Google Scholar 

  40. Orosz, J.A., & Kuulkers, E. 1999, MNRAS, 305, 132.

    Article  ADS  Google Scholar 

  41. Özel, F. & Psaltis, D. 2003, ApJ, 582, L31.

    Article  ADS  Google Scholar 

  42. Piran, T. 1999, Phys. Rep. 314 575; 2000, Phys. Rep. 333, 529.

    Google Scholar 

  43. Piro, L. et al. 2000, Science, 290, 955.

    Article  ADS  Google Scholar 

  44. Poutanen, J. & Gierlìnski, M. 2003, MNRAS, 343, 1301.

    Article  ADS  Google Scholar 

  45. Quaintrell, H., et al., 2003, A&A, 401, 313.

    Article  ADS  Google Scholar 

  46. Reeves, J.N. et al., 2002, Nature, 414, 512.

    Article  ADS  Google Scholar 

  47. Roger, R.S., Milne, D.K., Kesteven, M.J., Wellington, K.J., & Haynes, R.F. 1988, ApJ, 332, 940.

    Article  ADS  Google Scholar 

  48. Salmonson, J.D., & Wilson, J.R. 1999, ApJ, 517, 859.

    Article  ADS  Google Scholar 

  49. Sanwal, D., Pavlov, G.G., Zavlin, V.E., & Teter, M.A. 2002, ApJ, 574, L61.

    Article  ADS  Google Scholar 

  50. Shapiro, S.L. & Teukolsky, S.A. 1983, Black holes, white dwarfs and neutron stars, Ed. J. Wiley& Sons.

    Google Scholar 

  51. Shaposhnikov, N., & Titarchuk, L. 2002, ApJ, 570, L25.

    Article  ADS  Google Scholar 

  52. Shaposhnikov, N., Titarchuk, L., & Haberl, F. 2003, ApJ, 593, L38 (STH).

    Article  ADS  Google Scholar 

  53. Spergel, D.N. 2003, ApJ Suppl., 148, 175.

    Article  ADS  Google Scholar 

  54. Terazawa, H. 1979, INS-Report, 336 (INS, Univ. of Tokyo); 1989, J. Phys. Soc. Japan, 58, 3555; 1989, J. Phys. Soc. Japan, 58, 4388.

    Google Scholar 

  55. Thorsett, S.E., & Chakrabarty D. 1999, ApJ, 512, 288. [1994] Titarchuk, L. 1994, ApJ, 429, 330.

    Google Scholar 

  56. van Kerkwijk, M.H. et al.1995, A&A 303, 483.

    ADS  Google Scholar 

  57. Vietri, M., & Stella, L. 1998, ApJ, 507, L45.

    Article  ADS  Google Scholar 

  58. Voskresensky, D.N., Yasuhira, M, & Tatsumi, T. 2003, Nucl. Phys. A, 723, 291.

    ADS  Google Scholar 

  59. Walter, F.M., & Lattimer, J.M., 2002, ApJ, 576, L148.

    Article  ADS  Google Scholar 

  60. Witten, E., 1984, Phys. Rev. D, 30, 272.

    Article  MathSciNet  ADS  Google Scholar 

  61. Xu, R.X., 2002, ApJ, 570, L65.

    Article  ADS  Google Scholar 

  62. Xu, R.X. 2003, Chin. J. Astron. Astrophys., 3, 33.

    Article  ADS  Google Scholar 

  63. Zhang, B., Kobayashi, S., & Meszaros, P., 2003, ApJ, 595, 950.

    Article  ADS  Google Scholar 

  64. Zhang, B. & Meszaros, P., 2003, Int.J.Mod.Phys.A19:2385–2472.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Bombaci, I., Parenti, I., Vidaña, I. (2006). GAMMA RAY BURSTS AND DELAYED QUARK-DECONFINEMENT. In: Blaschke, D., Sedrakian, D. (eds) Superdense QCD Matter and Compact Stars. NATO Science Series II: Mathematics, Physics and Chemistry, vol 197. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3430-X_21

Download citation

Publish with us

Policies and ethics