Skip to main content

COLOR SUPERCONDUCTING QUARK MATTERAND THE INTERIOR OF NEUTRON STARS

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 197))

Abstract

We investigate the phase structure of color superconducting quark matter at intermediate densities for two-and three flavor systems. We thereby focus our attention on the influence of charge neutrality conditions as well as β-equilibrium on the different phases. These constraints are relevant in the context of quark matter at the interior of compact stars. We analyze the implications of color superconductivity on compact star configurations using different hadronic and quark equations of state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, and J.J.M. Verbaarschot, Phys. Rev. D 58 (1998) 096007.

    ADS  Google Scholar 

  2. K. Rajagopal and F. Wilczek, hep-ph/0011333, and references therein

    Google Scholar 

  3. M. Alford, Ann. Rev. Nucl. Part. Sci. 51 (2001) 131; F. Sannino, hep-ph/0205007; T. Schäfer, hep-ph/0304281; D.H. Rischke, JHEP 0306:032 (2003) hep-ph/0305030.

    Google Scholar 

  4. J.C. Collins and M.J. Perry, Phys. Rev. Lett. 34 (1975) 1353.

    Article  ADS  Google Scholar 

  5. B. Barrois, Nucl. Phys. B 129 (1977) 390.

    Article  ADS  Google Scholar 

  6. S.C. Frautschi, Asymptotic freedom and color superconductivity in dense quark matter, in: Proc. of the Workshop on Hadronic Matter at Extreme Energy Density, N. Cabibbo (ed.), Erice 1978.

    Google Scholar 

  7. D. Bailin and A. Love, Phys. Rep. 107 (1984) 325.

    Article  ADS  Google Scholar 

  8. M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B 422 (1998) 247.

    ADS  Google Scholar 

  9. R. Rapp, T. Schäfer, E.V. Shuryak, and M. Velkovsky, Phys. Rev. Lett. 81 (1998) 53.

    Article  ADS  Google Scholar 

  10. R.D. Pisarski and D.H. Rischke, Phys. Rev. D 60 (1999) 094013.

    ADS  Google Scholar 

  11. F.Weber, Acta Phys. Polon. B30 (1999) 3149.

    ADS  Google Scholar 

  12. “Physics of Neutron Star Interiors”, D. Blaschke, N.K. Glendenning, and A. Sedrakian (eds.), Springer, in press.

    Google Scholar 

  13. R.D. Pisarski and D.H. Rischke, Phys. Rev. D 61 (2000) 051501; ibid074017.

    Google Scholar 

  14. D. Rischke, Phys. Rev. D 62 (2000) 034007; G.W. Carter and D. Diakonov, Nucl.Phys. B 582 (2000) 571.

    Google Scholar 

  15. V.A. Miransky, I.A. Shovkovy, and L.C.R. Wijewardhana, Phys. Rev. D 64 (2001) 096002.

    ADS  Google Scholar 

  16. J. Berges and K. Rajagopal, Nucl. Phys. B 538 (1999) 215; G.W. Carter and D. Diakonov, Phys. Rev. D 60 (1999) 016004; T.M. Schwarz, S.P. Klevansky, and G. Papp, Phys. Rev. C 60 (1999) 055205.

    Google Scholar 

  17. T. Schäfer, Nucl.Phys. B 575 (2000) 269.

    Article  ADS  Google Scholar 

  18. M. Buballa, J. Hošsek, and M. Oertel, Phys. Rev. Lett. 90 (2003) 182002.

    Article  ADS  Google Scholar 

  19. F. Sannino and W. Schäfer, Phys. Lett. B 527 (2002) 142.

    ADS  Google Scholar 

  20. M. Alford, J.A. Bowers, J.M. Cheyne, G.A. Cowan, Phys. Rev. D 67 (2003) 054018.

    ADS  Google Scholar 

  21. F. Sannino, Phys. Rev. D 67 (2003) 054006.

    ADS  Google Scholar 

  22. A.J. Leggett, Rev. Mod. Phys. 47 (1975) 331.

    Article  ADS  Google Scholar 

  23. T. Schäfer, Phys. Rev. D 62 (2000) 094007.

    ADS  Google Scholar 

  24. A. Schmitt, Q. Wang, D.H. Rischke, Phys.Rev.Lett.91:242301 (2003)nucl-th/0301090.

    Article  ADS  Google Scholar 

  25. A. Schmitt, Q. Wang, D.H. Rischke, Phys.Rev.D69:094017 (2003)nucl-th/0311006.

    ADS  Google Scholar 

  26. D.T. Son, Phys. Rev. D 59 (1999) 094019; T. Schäfer and F. Wilczek, ibid D 60 (1999) 114033; D.K. Hong, V.A. Miransky, I.A. Shovkovy, and L.C.R.Wijewardhana, ibidD 61 (2000) 056001, err.D 62 (2000) 059903.

    Google Scholar 

  27. A.L. Fetter and J.D. Walecka, Quantum theory of many-particle systems, Mc Graw-Hill, New York (1971).

    Google Scholar 

  28. H. Nielsen and S. Chadha, Nucl. Phys. B 105 (1976) 445; H. Leutwyler, Phys. Rev. D 49 (1994) 3033; T. Schäfer, D.T. Son, M.A. Stephanov, D. Toublan, and J.J. Verbaarschot, Phys. Lett. B 522 (2001) 67;

    Google Scholar 

  29. T.-L. Ho, Phys. Rev. Lett. 81 (1998) 742; T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67 (1998) 1822.

    Google Scholar 

  30. V.A. Miransky and I.A. Shovkovy, Phys. Rev. Lett. 88 (2002) 111601.

    Article  ADS  Google Scholar 

  31. M. Alford, J. Bowers, and K. Rajagopal, Phys. Rev. D 63 (2001) 074016; R. Rapp, E. Shuryak, and I. Zahed, Phys. Rev. D 63 (2001) 034008; J. Bowers and K. Rajagopal, Phys. Rev. D 66 (2002) 065002.

    Google Scholar 

  32. H. Müther and A. Sedrakian, Phys. Rev. D 67 (2003) 085024.

    ADS  Google Scholar 

  33. I. Shovkovy and M. Huang, Phys. Lett. B 564 (2003) 205; M. Huang and I. Shovkovy, hep-ph/0307273.

    Google Scholar 

  34. M. Huang, these proceedings.

    Google Scholar 

  35. A. Sedrakian, these proceedings.

    Google Scholar 

  36. M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys. B 537 (1999) 443.

    Article  ADS  Google Scholar 

  37. R. Casalbuoni and R. Gatto, Phys. Lett. B 464 (1999) 111.

    ADS  Google Scholar 

  38. D.T. Son and M. Stephanov, Phys. Rev. D 61 (2000) 074012.

    ADS  Google Scholar 

  39. D.H. Rischke, Phys. Rev. D 62 (2000) 054017.

    ADS  Google Scholar 

  40. R. Casalbuoni, C. Gatto, and G. Nardulli, Phys. Lett. B 498 (2001) 179; err.B 517 (2001) 483.

    Google Scholar 

  41. P. Amore, M.C. Birse, J.A. McGovern, and N. R.Walet, Phys. Rev. D 65 (2002) 074005.

    ADS  Google Scholar 

  42. M. Alford and K. Rajagopal, JHEP 0206 (2002) 031.

    Article  ADS  Google Scholar 

  43. A. Steiner, S. Reddy, and M. Prakash, Phys. Rev. D 66 (2002) 094007.

    ADS  Google Scholar 

  44. N.K. Glendenning, Phys. Rev. D 46 (1992) 1274.

    ADS  Google Scholar 

  45. P. Rehberg, S.P. Klevansky, and J. Hüfner, Phys. Rev. C 53 (1996) 410.

    ADS  Google Scholar 

  46. F. Neumann, M. Buballa, and M. Oertel, Nucl. Phys. A 714 (2003) 481.

    ADS  Google Scholar 

  47. M. Alford, K. Rajagopal, S. Reddy, and F. Wilczek, Phys. Rev. D 64 (2001) 074017.

    ADS  Google Scholar 

  48. M. Alford and S. Reddy, Phys. Rev. D 67 (2003) 074024.

    ADS  Google Scholar 

  49. M. Baldo, M. Buballa, F. Burgio, F. Neumann, M. Oertel, and H.-J. Schulze, Phys. Lett. B 562 (2003) 153.

    ADS  Google Scholar 

  50. I. Shovkovy, M. Hanauske, and M. Huang, Phys. Rev. D 67 (2003) 103004.

    ADS  Google Scholar 

  51. D. Blaschke, H. Grigorian, D.N. Aguilera, S. Yasui, and H. Toki, AIP Conf. Proc. 660 (2003) 209.

    Article  ADS  Google Scholar 

  52. M. Buballa, F. Neumann, M. Oertel, I. Shovkovy, in preparation.

    Google Scholar 

  53. P. Papazoglou, S. Schramm, J. Schaffner-Bielich, H. Stöcker, and W. Greiner, Phys. Rev. C 57 (1998) 2576; P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, and W. Greiner, Phys. Rev. C 59 (1999) 411; M. Hanauske, D. Zschiesche, S. Pal, S. Schramm, H. Stöcker, and W. Greiner, Astrophys. J. 537 (2000) 50329.

    Google Scholar 

  54. R.C. Tolman, Phys. Rev. 55 (1939) 364; J.R. Oppenheimer and G. Volkoff, Phys. Rev. 55 (1939) 374.

    Google Scholar 

  55. M. Baldo, I. Bombaci, and G.F. Burgio, Astron. Astrophys. 328 (1997) 274.

    ADS  Google Scholar 

  56. M. Baldo, G.F. Burgio, and H.-J. Schulze, Phys. Rev. C 58 (1998) 3688; Phys. Rev. C 61 (2000) 055801.

    Google Scholar 

  57. N.K. Glendenning, Compact Stars (Springer, New York, 1996).

    Google Scholar 

  58. T. Hatsuda and T. Kunihiro, Phys. Rep. 247 (1994) 221.

    Article  ADS  Google Scholar 

  59. H.-J. Schulze, these proceedings.

    Google Scholar 

  60. M. Alford, C. Kouvaris, and K. Rajagopal, Phys.Rev.Lett.92:222001 (2003)hepph/ 0311286.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Oertel, M., Buballa, M. (2006). COLOR SUPERCONDUCTING QUARK MATTERAND THE INTERIOR OF NEUTRON STARS. In: Blaschke, D., Sedrakian, D. (eds) Superdense QCD Matter and Compact Stars. NATO Science Series II: Mathematics, Physics and Chemistry, vol 197. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3430-X_11

Download citation

Publish with us

Policies and ethics