Skip to main content

Role of Brain Microenvironment in Brain Metastases

  • Chapter
  • 494 Accesses

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

Abstract

The development of brain metastasis portends a grave prognosis for patients with systemic cancer. Efforts to alter the course of this disease have been hampered by a poor understanding of the biology of the metastatic process. Recent insights into the biologic determinants of this process aided by advances in molecular biology and biotechnology have altered the basic concepts of our understanding of how cancer cells metastasize to distant organs. These findings have validated and extended the “seed and soil” hypothesis emphasizing a critical role for the microenvironment of the target organ in the development of metastatic lesions. The brain microenvironment has unique characteristics that distinguish it from other organs of the body. Hence, therapeutic strategies to target the interaction between the metastatic tumor cell and the brain require a clear understanding of the molecular and anatomic features that influence this process. Recent studies have revealed an intricate and often facilitatory interaction between these elements of the brain metastatic process. These findings may allow the development of targeted therapies that in combination with therapeutic strategies against systemic malignancies hold promise to improve the prognosis of patients with brain metastases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, J. D., and Young, B., 1996, Demographics of brain metastasis. Neurosurg Clin N Am, 337–344.

    Google Scholar 

  2. Posner, J. B., and Chernik, N. L., 1978, Intracranial metastases from systemic cancer. Adv Neurol, 579–592.

    Google Scholar 

  3. Patchell, R. A., 1991, Brain metastases. Neurol Clin, 817–824.

    Google Scholar 

  4. Klos, K. J., and O'Neill, B. P., 2004, Brain metastases. Neurologist, 31–46.

    Google Scholar 

  5. Nussbaum, E. S., Djalilian, H. R., Cho, K. H., and Hall, W. A., 1996, Brain metastases. Histology, multiplicity, surgery, and survival. Cancer, 1781–1788.

    Google Scholar 

  6. Mehta, M. P., Rodrigus, P., Terhaard, C.H.J., Rao, A., Suh, J., Roa, W., Souhami, L., Bezjak, A., Leibenhaut, M., Komaki, R., Schultz, C., Timmerman, R., Curran, W., Smith, J., Phan, S. C., Miller, R. A., and Renschler, M. F., 2003, Survival and Neurologic Outcomes in a Randomized Trial of Motexafin Gadolinium and Whole-Brain Radiation Therapy in Brain Metastases. Journal of Clinical Oncology, 2529–2536.

    Google Scholar 

  7. Fleckenstein, K., Hof, H., Lohr, F., Wenz, F., and Wannenmacher, M., 2004, Prognostic factors for brain metastases after whole brain radiotherapy. Data from a single institution. Strahlenther Onkol 268–273.

    Google Scholar 

  8. Puduvalli, V., and Armstrong, T,, 2004, Management of patients with brain metastasis, In Palliative Care Consultations in Primary and Metastatic Brain Tumours, Booth, S., Bruera, E., and Oliver D., eds, Oxford University Press, NY.

    Google Scholar 

  9. Coman, D., deLong, R.P., and McCutcheon, M., 1951, Studies on the mechanisms of metastasis; the distribution of tumors in various organs in relation to the distribution of arterial emboli. Cancer Research, 648–651.

    Google Scholar 

  10. Delattre, J. Y., Krol, G., Thaler, H. T., and Posner, J. B., 1988, Distribution of brain metastases. Arch Neurol, 741–744.

    Google Scholar 

  11. Hwang, T. L., Close, T. P., Grego, J. M., Brannon, W. L., and Gonzales, F., 1996, Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer, 1551–1555.

    Google Scholar 

  12. Paget, S., 1889, The distribution of secondary growths in cancer of the breast. Lancet, 571–573.

    Google Scholar 

  13. Duvernoy, H., Delon, S., and Vannson, J. L., 1983, The vascularization of the human cerebellar cortex. Brain Res Bull, 419–480.

    Google Scholar 

  14. Pardridge, W. M., Triguero, D., and Farrell, C. R., 1990, Downregulation of blood-brain barrier glucose transporter in experimental diabetes. Diabetes, 1040–1044.

    Google Scholar 

  15. Nonaka, H., Akima, M., Hatori, T., Nagayama, T., Zhang, Z., and Ihara, F., 2003, The microvasculature of the cerebral white matter: arteries of the subcortical white matter. J Neuropathol Exp Neurol 154–161.

    Google Scholar 

  16. Smith, Q.R., and Rapoport, S.I., 1986, Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem, 1732–1742.

    Google Scholar 

  17. Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., and Dejana, E., 1998, Junctional Adhesion Molecule, a Novel Member of the Immunoglobulin Superfamily That Distributes at Intercellular Junctions and Modulates Monocyte Transmigration. The Journal of Cell Biology, 117–127.

    Google Scholar 

  18. Citi, S., 1993, The molecular organization of tight junctions. The Journal of Cell Biology, 485–489.

    Google Scholar 

  19. Bazzoni, G., and Dejana, E., 2004, Endothelial Cell-to-Cell Junctions: Molecular Organization and Role in Vascular Homeostasis. Physiological Reviews, 869–901.

    Google Scholar 

  20. Wachtel, M., Frei, K., Ehler, E., Fontana, A., Winterhalter, K., and Gloor, S. M., 1999, Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. Journal of Cell Science, 4347–4356.

    Google Scholar 

  21. Lampugnani, M. G., Corada, M., Andriopoulou, P., Esser, S., Risau, W., and Dejana, E., 1997, Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. Journal of Cell Science, 2065–2077.

    Google Scholar 

  22. Kozaki, K., Koshikawa, K., Tatematsu, Y., Miyaishi, O., Saito, H., Hida, T., Osada, H., and Takahashi, T., 2001, Multi-faceted analyses of a highly metastatic human lung cancer cell line NCI-H460-LNM35 suggest mimicry of inflammatory cells in metastasis. Oncogene, 4228–4234.

    Google Scholar 

  23. Glinsky, V.V., Glinsky, G.V., Glinskii, O.V., Huxley, V.H., Turk, J.R., Mossine, V.V., Deutscher, S.L., Pienta, K.J., and Quinn, T.P., 2003, Intravascular Metastatic Cancer Cell Homotypic Aggregation at the Sites of Primary Attachment to the Endothelium. Cancer Research, 3805–3811.

    Google Scholar 

  24. Karpatkin, S., and Pearlstein, E., 1981, Role of platelets in tumor cell metastases. Annals of Internal Medicine, 636–641.

    Google Scholar 

  25. Honn, K. V., Tang, D. G., and Crissman, J. D., 1992, Platelets and cancer metastasis: a causal relationship?. Cancer Metastasis Review, 325–351.

    Google Scholar 

  26. Doi, K., Horiuchi, T., Uchinami, M., Tabo, T., Kimura, N, Yokomachi, J, Yoshida, M, and Tanaka, K., 2002, Hepatic ischemia-reperfusion promotes liver metastasis of colon cancer. Journal of Surgical Research, 243–247.

    Google Scholar 

  27. Moon, B. K., Lee, Y. J., Battle, P., Jessup, J. M., Raz, A., and Kim, H. R., 2001, Galectin-3 protects human breast carcinoma cells against nitric oxide-induced apoptosis: implication of galectin-3 function during metastasis. American Journal of Pathology, 1055–1060.

    Google Scholar 

  28. Marchetti, D., 1997, Specific degradation of subendothelial matrix proteoglycans by brain-metastatic melanoma and brain endothelial cell heparanases. Journal of Cell Physiology, 334–342.

    Google Scholar 

  29. Marchetti, D., Li, J., and Shen, R., 2000, Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Research, 4767–4770.

    Google Scholar 

  30. Marchetti, D., McQuillan, D. J., Spohn, W. C., Carson, D. D., and Nicolson, G. L., 1996, Neurotrophin stimulation of human melanoma cell invasion: selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Cancer Research, 2856–2856.

    Google Scholar 

  31. Okada, Y., 2000, Tumor cell-matrix interaction: pericellular matrix degradation and metastasis. Verh Dtsch Ges Pathol, 33–42.

    Google Scholar 

  32. Menter, D. G., Herrmann, J. L., and Nicolson, G. L., 1995, The role of trophic factors and autocrine/paracrine growth factors in brain metastasis. Clinical and Experimental Metastasis, 67–88.

    Google Scholar 

  33. Nicolson, G. L., and Menter, D. G., 1995, Trophic factors and central nervous system metastasis. Cancer Metastasis Review, 303–321.

    Google Scholar 

  34. Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., and Groom, A. C., 1998, Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 865–873.

    Google Scholar 

  35. Price, J. E., Aukerman, S. L., and Fidler, I. J., 1986, Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Research, 5172–5178.

    Google Scholar 

  36. Nicolson, G. L., and Custead, S. E., 1982, Tumor metastasis is not due to adaptation of cells to a new organ environment. Science, 176–178.

    Google Scholar 

  37. Pauli, B. U., Augustin-Voss, H. G., el Sabban, M. E., Johnson, R. C., and Hammer, D. A., 1990, Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Review, 175–189.

    Google Scholar 

  38. Ito, S., Nakanishi, H., Ikehara, Y., Kato, T., Kasai, Y., Ito, K., Akiyama, S,. Nakao, A., and Tatematsu, M., 2001, Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. International Journal of Cancer, 212–217.

    Google Scholar 

  39. Kawaguchi, T., Kawaguchi, M., Dulski, K. M., and Nicolson, G. L., 1985, Cellular behavior of metastatic B16 melanoma in experimental blood-borne implantation and cerebral invasion. An electron microscopic study. Invasion Metastasis, 16–30.

    Google Scholar 

  40. Tang, D. G., and Honn, K. V., 1994, Adhesion molecules and tumor metastasis: an update. Invasion Metastasis, 109–122.

    Google Scholar 

  41. Orr, F. W., Wang, H. H., Lafrenie, R. M., Scherbarth, S., and Nance, D. M., 2000, Interactions between cancer cells and the endothelium in metastasis. Journal of Pathology, 310–329.

    Google Scholar 

  42. Felding-Habermann, B., Habermann, R., SaldÆvar, E., and Ruggeri, Z. M., 1996, Role of beta3 Integrins in Melanoma Cell Adhesion to Activated Platelets under Flow. Journal of Biological Chemistry, 5892–5900.

    Google Scholar 

  43. Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., Dillehay, L. E., Madan, A., Semenza, G. L., and Bedi, A., 2000, Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes and Development, 33–44.

    Google Scholar 

  44. Tsuruo, T., Kawabata, H., Iida, H., and Yamori, T., 1986, Tumor-induced platelet aggregation and growth promoting factors as determinants for successful tumor metastasis. Clinical and Experimental Metastasis, 25–33.

    Google Scholar 

  45. Varki, A., Varki, N. M., Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., 2001, P-selectin, carcinoma metastasis and heparin: novel mechanistic connections with therapeutic implications. Brazilian Journal of Medical Biology Research, 711–717.

    Google Scholar 

  46. Velikova, G., Banks, R. E., Gearing, A., Hemingway, I., Forbes, M. A., Preston, S. R., Jones, M., Wyatt, J., Miller, K., Ward, U., Al Maskatti, J., Singh, S. M., Ambrose, N. S., Primrose, J. N., and Selby, P. J., 1997, Circulating soluble adhesion molecules E-cadherin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in patients with gastric cancer. British. Journal of Cancer, 1398–1404.

    Google Scholar 

  47. Koop, S., MacDonald, I. C., Luzzi, K., Schmidt, E. E., Morris, V. L., Grattan, M., Khokha, R., Chambers, A. F., and Groom, A. C., 1995, Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Research, 2520–2523.

    Google Scholar 

  48. Brummendorf, T. and Rathjen, F. G., 1995, Cell adhesion molecules 1: immunoglobulin superfamily. Protein Profile, 963–1108.

    Google Scholar 

  49. Geertsen, R., Zenklusen, R., Kamarashev, J., Burg, G., and Dummer, R., 1999, Inverse regulation of neuronal cellular adhesion molecule (NCAM) by IFN-gamma in melanoma cell cultures established from CNS lesions. International Journal of Cancer, 135–140.

    Google Scholar 

  50. Cavallaro, U., Niedermeyer, J., Fuxa, M., and Christofori, G., 2001, N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nature Cell Biology, 650–657.

    Google Scholar 

  51. Natali, P., Nicotra, M. R., Cavaliere, R., Bigotti, A., Romano, G., Temponi, M., and Ferrone, S., 1990, Differential expression of intercellular adhesion molecule 1 in primary and metastatic melanoma lesions. Cancer Research, 1271–1278.

    Google Scholar 

  52. Staykova, M., Maxwell, L., and Willenborg, D., 2000, Kinetics and polarization of the membrane expression of cytokine-induced ICAM-1 on rat brain endothelial cells. J Neuropathol Exp Neurol, 120–128.

    Google Scholar 

  53. Hunter, T., 1987, A thousand and one protein kinases. Cell, 823–829.

    Google Scholar 

  54. Radisavljevic, Z., Avraham, H., and Avraham, S., 2000, Vascular Endothelial Growth Factor Up-regulates ICAM-1 Expression via the Phosphatidylinositol 3 OH-kinase/AKT/Nitric Oxide Pathway and Modulates Migration of Brain Microvascular Endothelial Cells. Journal of Biological Chemistry, 20770–20774.

    Google Scholar 

  55. Diamond, M. S., and Springer, T. A., The dynamic regulation of integrin adhesiveness. 1994, Current Biology, 506–517.

    Google Scholar 

  56. Giancotti, F. G., and Ruoslahti, E., 1999, Integrin Signaling. Science, 1028–1033.

    Google Scholar 

  57. Lin, T. H., Rosales, C., Mondal, K., Bolen, J. B., Haskill, S., and Juliano, R. L., 1995, Integrinmediated Tyrosine Phosphorylation and Cytokine Message Induction in Monocytic Cells. Journal of Biological Chemistry, 16189–16197.

    Google Scholar 

  58. Reyes-Reyes, M., Mora, N., Zentella, A., and Rosales, C., 2001, Phosphatidylinositol 3-kinase mediates integrin-dependent NF-kappaB and MAPK activation through separate signaling pathways. Journal of Cell Science, 1579–1589.

    Google Scholar 

  59. Aplin, A. E., and Juliano, R. L., Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. 1999, Journal of Cell Science, 695–706.

    Google Scholar 

  60. Cary, L. A., Han, D. C., and Guan, J. L., 1999, Integrin-mediated signal transduction pathways. Histology and Histopathology, 1001–1009.

    Google Scholar 

  61. Marshall, J. F., and Hart, I. R., 1996, The role of alpha v-integrins in tumour progression and metastasis. Seminars of Cancer Biology, 129–138.

    Google Scholar 

  62. Felding-Habermann, B., O'Toole, T. E., Smith, J. W., Fransvea, E., Ruggeri, Z. M., Ginsberg, M. H., Hughes, P. E., Pampori, N., Shattil, S. J., Saven, A., and Mueller, B. M., 2001, Integrin activation controls metastasis in human breast cancer. Proceedings of the National Academy of Sciences, 1853–1858.

    Google Scholar 

  63. Horton, M. A., 1997, The alpha v beta 3 integrin “vitronectin receptor”. International Journal of Biochemistry and Cell Biology, 21–725.

    Google Scholar 

  64. Brooks, P. C., Clark, R. A., and Cheresh, D. A., 1994, Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 569–571.

    Google Scholar 

  65. Byzova, T. V., Goldman, C. K., Pampori, N., Thomas, K. A., Bett, A., Shattil, S. J., and Plow, E. F., 2000, A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Molecular Cell, 851–860.

    Google Scholar 

  66. Wang, H., Fu, W., Im, J. H., Zhou, Z., Santoro, S. A., Iyer, V., DiPersio, C. M., Yu, Q. C., Quaranta, V., Al Mehdi, A., and Muschel, R. J., 2004, Tumor cell {alpha}3{beta}1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. The Journal of Cell Biology, 935–941.

    Google Scholar 

  67. Smith, J. W., 2003, Cilengitide Merck. Current Opinions Investigational Drugs, 741–745.

    Google Scholar 

  68. Eskens, F. A., Dumez, H., Hoekstra, R., Perschl, A., Brindley, C., Bottcher, S., Wynendaele, W., Drevs, J., Verweij, J., and van Oosterom, A. T., 2003, Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. European Journal of Cancer, 917–926.

    Google Scholar 

  69. Posey, J. A., Khazaeli, M. B., DelGrosso, A., Saleh, M. N., Lin, C. Y., Huse, W., and LoBuglio, A. F., 2001, A pilot trial of Vitaxin, a humanized antivitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biotherapy and Radiopharamacology, 125–132.

    Google Scholar 

  70. Reinmuth, N., Liu, W., Ahmad, S. A., Fan, F., Stoeltzing, O., Parikh, A. A., Bucana, C. D., Gallick, G. E., Nickols, M. A., Westlin, W. F., and Ellis, L. M., 2003, {alpha}v{beta}3 Integrin Antagonist S247 Decreases Colon Cancer Metastasis and Angiogenesis and Improves Survival in Mice. Cancer Research, 2079–2087.

    Google Scholar 

  71. McEver, R. P., 1997, Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugation Journal, 585–591.

    Google Scholar 

  72. Aigner, S., Sthoeger, Z. M., Fogel, M., Weber, E., Zarn, J., Ruppert, M., Zeller, Y., Vestweber, D., Stahel, R., Sammar, M., and Altevogt, P., 1997, CD24, a mucin-type glycoprotein, is a ligand for Pselectin on human tumor cells. Blood, 3385–95.

    Google Scholar 

  73. Stone, J. P., and Wagner, D. D., 1993, P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. Journal of Clinical Investigation, 804–813.

    Google Scholar 

  74. Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., Varki, N. M., and Varki, A., 2001, Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Sciences, USA, 3352–3357.

    Google Scholar 

  75. Wei, M., Tai, G., Gao, Y., Li, N., Huang, B., Zhou, Y., Hao, S., and Zeng, X., 2004, Modified Heparin Inhibits P-selectin-mediated Cell Adhesion of Human Colon Carcinoma Cells to Immobilized Platelets under Dynamic Flow Conditions. Journal of Biological Chemistry, 29202–29210.

    Google Scholar 

  76. Lefer, D. J., 2000, Pharmacology of selectin inhibitors in ischemia/reperfusion states. Annual Review of Pharmacology and Toxicology, 283–294.

    Google Scholar 

  77. Berditchevski, F., 2001, Complexes of tetraspanins with integrins: more than meets the eye. Journal of Cell Science, 4143–4151.

    Google Scholar 

  78. Yanez-Mo, M., Tejedor, R., Rousselle, P., Sanchez-Madrid, F., 2001, Tetraspanins in intercellular adhesion of polarized epithelial cells: spatial and functional relationship to integrins and cadherins. Journal of Cell Science, 577–587.

    Google Scholar 

  79. Sugiura, T., and Berditchevski, F., 1999, Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). Journal of Cell Biology, 1375–1389.

    Google Scholar 

  80. Ikeyama, S., Koyama, M., Yamaoko, M., Sasada, R., and Miyake, M., 1993, Suppression of cell motility and metastasis by transfection with human motilityrelated protein (MRP-1/CD9) DNA. The Journal of Experimental Medicine, 1231–1237.

    Google Scholar 

  81. Radford, K. J., Mallesch, J., and Hersey, P., 1995, Suppression of human melanoma cell growth and metastasis by the melanoma-associated antigen CD63 (ME491). International Journal of Cancer, 631–635.

    Google Scholar 

  82. Testa, J. E., Brooks, P. C., Lin, J. M., and Quigley, J. P., 1999, Eukaryotic Expression Cloning with an Antimetastatic Monoclonal Antibody Identifies a Tetraspanin (PETA-3/CD151) as an Effector of Human Tumor Cell Migration and Metastasis. Cancer Research, 3812–3820.

    Google Scholar 

  83. Lee, J. H., Park, S. R., Chay, K. O., Seo, Y. W., Kook, H., Ahn, K. Y., Kim, Y. J., and Kim, K. K., 2004, KAI1 COOH-Terminal Interacting Tetraspanin (KITENIN), a Member of the Tetraspanin Family, Interacts with KAI1, a Tumor Metastasis Suppressor, and Enhances Metastasis of Cancer. Cancer Research, 4235–4243.

    Google Scholar 

  84. Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M., and Weed, S. A., 2000, Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene, 5606–5613.

    Google Scholar 

  85. Bruce-Staskal, P. J., and Bouton, A. H., 2001, PKC-dependent activation of FAK and src induces tyrosine phosphorylation of Cas and formation of Cas-Crk complexes. Experimental Cell Research, 296–306.

    Google Scholar 

  86. Nikolopoulos, S. N., and Turner, C. E., 2001, Integrin-Linked Kinase (ILK) Binding to Paxillin LD1 Motif Regulates ILK Localization to Focal Adhesions. Journal of Biological Chemistry, 23499–23505.

    Google Scholar 

  87. Ludwig, H. C., Akhavan-Shigari, R., Rausch, S., Schallock, K., Quentin, C., Bockermann, V., and Kolenda, H., 2000, Expression of focal adhesion kinase (p125 FAK) and proline-rich tyrosine kinase 2 (PYK2/CAKb) in cerebral metastases, correlation with VEGF-R, ecNOS III-labelling and morphometric data. Anticancer Research, 1419–1424.

    Google Scholar 

  88. Abedi, H., and Zachary, I., 1997, Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry, 15442–15451.

    Google Scholar 

  89. Lu, Z., Jiang, G., Blume-Jensen, P., and Hunter, T., 2001, Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Molecular and Cell Biology, 4016–4031.

    Google Scholar 

  90. Zhang, M., and Olsson, Y., 1995, Reactions of astrocytes and microglial cells around hematogenous metastases of the human brain. Expression of endothelin-like immunoreactivity in reactive astrocytes and activation of microglial cells. Journal of Neurological Sciences, 26–32.

    Google Scholar 

  91. Yong, V. W., Power, C., Forsyth, P., and Edwards, D. R., 2001, Metalloproteinases in biology and pathology of the nervous system. Nature Reviews Neuroscience, 502–511.

    Google Scholar 

  92. Saaristo, A., Karpanen, T., and Alitalo, K., 2000, Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene, 6122–6129.

    Google Scholar 

  93. Cavallaro, U., and Christofori, G., 2000, Molecular mechanisms of tumor angiogenesis and tumor progression. Journal of Neurooncology, 63–70.

    Google Scholar 

  94. Stamenkovic, I., 2000, Matrix metalloproteinases in tumor invasion and metastasis. Seminars in Cancer Biology, 415–433.

    Google Scholar 

  95. Stetler-Stevenson, W. G., and Yu, A. E., 2001, Proteases in invasion: matrix metalloproteinases. Seminars in Cancer Biology, 143–154.

    Google Scholar 

  96. Collen, D., 1999, The plasminogen (fibrinolytic) system. Thrombosis and Haemostasis, 259–270.

    Google Scholar 

  97. Khatib, A. M., Nip, J., Fallavollita, L., Lehmann, M., Jensen, G., and Brodt, P., 2001, Regulation of urokinase plasminogen activator/plasmin-mediated invasion of melanoma cells by the integrin vitronectin receptor alphaVbeta3. International Journal of Cancer, 300–308.

    Google Scholar 

  98. Chandrasekar, N., Mohanam, S., Gujrati, M., Olivero, W. C., Dinh, D. H., and Rao, J. S., 2003, Downregulation of uPA inhibits migration and PI3k/Akt signaling in glioblastoma cells. Oncogene, 392–400.

    Google Scholar 

  99. Ahmed, N., Oliva, K., Wang, Y., Quinn, M., and Rice, G., 2003, Downregulation of urokinase plasminogen activator receptor expression inhibits Erk signalling with concomitant suppression of invasiveness due to loss of uPAR-beta1 integrin complex in colon cancer cells. British Journal of Cancer, 374–384.

    Google Scholar 

  100. Crowley, C. W., Cohen, R. L., Lucas, B. K., Liu, G., Shuman, M. A., and Levinson, A. D., 1993, Prevention of Metastasis by Inhibition of the Urokinase Receptor. Proceedings of the National Academy of Sciences, 5021–5025.

    Google Scholar 

  101. Ploug, M., Gardsvoll, H., Jorgensen, T. J., Lonborg, H. L., and Dano, K., 2002, Structural analysis of the interaction between urokinase-type plasminogen activator and its receptor: a potential target for anti-invasive cancer therapy. Biochemistry Society Transactions, 177–183.

    Google Scholar 

  102. Sanderson, R. D., 2001, Heparan sulfate proteoglycans in invasion and metastasis. Seminars in Cell Developmental Biology, 89–98.

    Google Scholar 

  103. Koliopanos, A., Friess, H., Kleeff, J., Shi, X., Liao, Q., Pecker, I., Vlodavsky, I., Zimmermann, A., Buchler, M. W., and Sanderson, R. D., 2001, Heparanase expression in primary and metastatic pancreatic cancer. Cancer Research, 4655–4659.

    Google Scholar 

  104. Kosir, M. A., Wang, W., Zukowski, K. L., Tromp, G., and Barber, J., 1999, Degradation of basement membrane by prostate tumor heparanase. Journal of Surgical Research, 42–47.

    Google Scholar 

  105. Semenza, G. L., 2000, Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 71–103.

    Google Scholar 

  106. Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza, G. L., and Simons, J. W., 1999, Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Research, 5830–5835.

    Google Scholar 

  107. Kim, L. S., Huang, S., Lu, W., Lev, D. C., and Price, J. E., 2004, Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clinical and Experimental Metastasis, 107–118.

    Google Scholar 

  108. Croll, S. D., Ransohoff, R. M., Cai, N., Zhang, Q., Martin, F. J., Wei, T., Kasselman, L. J., Kintner, J., Murphy, A. J., Yancopoulos, G. D., and Wiegand, S. J., 2004, VEGF-mediated inflammation precedes angiogenesis in adult brain. Experimental Neurology, 388–402.

    Google Scholar 

  109. Aramoto, H., Breslin, J. W., Pappas, P. J., Hobson II, R. W., and Duran, W. N., 2004, Vascular endothelial growth factor stimulates differential signaling pathways in the in vivo microcirculation. AJP-Heart and Circulatory Physiology (epub ahead of publication).

    Google Scholar 

  110. Martinez-Estrada, O. M., Rodriguez-Millan, E., Gonzalez-de Vicente, E., Reina, M., Vilaro, S., and Fabre, M., 2003, Erythropoietin protects the <i>in vitro</i> blood-brain barrier against VEGF-induced permeability. European Journal of Neuroscience, 2538–2544.

    Google Scholar 

  111. Lee, B. C., Lee, T. H., Avraham, S., and Avraham, H. K., 2004, Involvement of the Chemokine Receptor CXCR4 and Its Ligand Stromal Cell-Derived Factor 1{alpha} in Breast Cancer Cell Migration Through Human Brain Microvascular Endothelial Cells. Molecular Cancer Research, 327–338.

    Google Scholar 

  112. Seibert, C. and Sakmar, T. P., 2004, Small-molecule antagonists of CCR5 and CXCR4: a promising new class of anti-HIV-1 drugs. Current Pharmacologic Design, 2041–2062.

    Google Scholar 

  113. Fidler, I. J., and Kripke, M. L., 1977, Metastasis results from preexisting variant cells within a malignant tumor. Science, 893–895.

    Google Scholar 

  114. Weigelt, B., Glas, A. M., Wessels, L. F. A., Witteveen, A. T., Peterse, J. L., and van't Veer, L. J., 2003, Gene expression profiles of primary breast tumors maintained in distant metastases. Proceedings of the National Academy of Sciences, 15901–15905.

    Google Scholar 

  115. Malins, D. C., Gilman, N. K., Green, V. M., Wheeler, T. M., Barker, E. A., Vinson, M. A., Sayeeduddin, M., Hellstrom, K. E., and Anderson, K. M., 2004, Metastatic cancer DNA phenotype identified in normal tissues surrounding metastasizing prostate carcinomas. Proceedings of the National Academy of Sciences, 11428–11431.

    Google Scholar 

  116. Nishizuka, I., Ishikawa, T., Hamaguchi, Y., Kamiyama, M., Ichikawa, Y., Kadota, K., Miki, R., Tomaru, Y., Mizuno, Y., Tominaga, N., Yano, R., Goto, H., Nitanda, H., Togo, S., Okazaki, Y., Hayashizaki, Y., and Shimada, H., 2002, Analysis of gene expression involved in brain metastasis from breast cancer using cDNA microarray. Breast Cancer, 26–32.

    Google Scholar 

  117. Yu, Y., Khan, J., Khanna, C., Helman, L., Meltzer, P. S., and Merlino, G., 2004, Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nature Medicine, 175–181.

    Google Scholar 

  118. Chen, Z., Zhang, K., Zhang, X., Yuan, X. H., Yuan, Z., Jin, L., and Xiong, M., 2003, Comparison of gene expression between metastatic derivatives and their poorly metastatic parental cells implicates crucial tumor-environment interaction in metastasis of head and neck squamous cell carcinoma. Clinical and Experimental Metastasis, 335–342.

    Google Scholar 

  119. Clark, E. A., Golub, T. R., Lander, E. S., and Hynes, R. O., 2000, Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 532–535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Grunfeld, J., Puduvalli, V. (2005). Role of Brain Microenvironment in Brain Metastases. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_7

Download citation

Publish with us

Policies and ethics