Skip to main content

Tissue Engineering of Cartilage and Myocardium

  • Chapter

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckwalter, J.A. and Mankin, H.J. (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 47: 487–504.

    PubMed  CAS  Google Scholar 

  2. Einhorn, T.A. (1998) The cell and molecular biology of fracture healing. Clin. Orthop. 355S: S7–S21.

    Article  Google Scholar 

  3. O’Driscoll, S.W. (2001) Preclinical cartilage repair: current status and future perspectives. Clin. Orthop. 391Suppl: S397–S401.

    Google Scholar 

  4. Freed, L.E. and Vunjak-Novakovic, G. (2000) Tissue engineering bioreactors. In: Lanza, R.P.; Langer R. and Vacanti, J. (eds), Principles of Tissue Engineering. Academic Press, pp. 143–156.

    Google Scholar 

  5. Schaefer, D.; Martin, I.; Jundt, G.; Seidel, J.; Heberer, M.; Grodzinsky, A.J.; Bergin, I.; Vunjak-Novakovic, G. and Freed, L.E. (2002) Tissue engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 46: 2524–2534.

    Article  PubMed  Google Scholar 

  6. Li, R.-K.; Jia, Z.Q.; Weisel, R.D.; Mickle, D.A.G.; Choi, A. and Yau, T.M. (1999) Survival and function of bioengineered cardiac grafts. Circulation 100: II63–II69.

    PubMed  CAS  Google Scholar 

  7. Leor, J.; Aboulafia-Etzion, S.; Dar, A.; Shapiro, L.; Barbash, I.M.; Battler, A.; Granot, Y. and Cohen, S. (2000) Bioengineerred cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 102:III56–III61.

    PubMed  CAS  Google Scholar 

  8. Shimizu, T.; Yamato, M.; Isoi, Y.; Akutsu, T.; Setomaru, T.; Abe, K.; Kikuchi, A.; Umezu, M. and Okano, T. (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90: e40–e48.

    Article  PubMed  CAS  Google Scholar 

  9. Vunjak-Novakovic, G.; Freed, L.E.; Biron, R.J. and Langer, R. (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J. 42: 850–860.

    Article  CAS  Google Scholar 

  10. Vunjak-Novakovic, G.; Obradovic, B.; Martin, I.; Bursac P; Langer, R. and Freed, L.E. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog. 14:193–202.

    Article  PubMed  CAS  Google Scholar 

  11. Vunjak-Novakovic, G.; Martin, I.; Obradovic, B.; Treppo, S.; Grodzinsky, A.J.; Langer, R. and Freed, L.E. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue engineered cartilage. J. Orthop. Res. 17: 130–138.

    Article  PubMed  CAS  Google Scholar 

  12. Freed, L.E.; Marquis, J.C.; Vunjak-Novakovic, G.; Emmanual, J. and Langer, R. (1994) Composition of cell-polymer cartilage implants. Biotechnol. Bioeng. 43: 605–614.

    Article  CAS  PubMed  Google Scholar 

  13. Freed, L.E.; Vunjak-Novakovic, G.; Biron, R.; Eagles, D.; Lesnoy, D.; Barlow, S. and Langer, R. (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 12: 689–693.

    Article  PubMed  CAS  Google Scholar 

  14. Freed, L.E. and Vunjak-Novakovic, G. (1995) Tissue engineering of cartilage. In: Bronzino, J.D. (ed), Biomedical Engineering Handbook. CRC Press, pp. 1788–1807.

    Google Scholar 

  15. Freed, L.E.; Langer, R.; Martin, I.; Pellis, N. and Vunjak-Novakovic, G. (1997) Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. USA 94: 13885–13890.

    Article  PubMed  CAS  Google Scholar 

  16. Freed, L.E.; Hollander, A.P.; Martin, I.; Barry, J.R.; Langer, R. and Vunjak-Novakovic, G. (1998) Chondrogenesis in a cell-polymer-bioreactor system. Exp. Cell Res. 240: 58–65.

    Article  PubMed  CAS  Google Scholar 

  17. Obradovic, B.; Carrier, R.L.; Vunjak-Novakovic, G. and Freed, L.E. (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63: 197–205.

    Article  PubMed  CAS  Google Scholar 

  18. Obradovic, B.; Meldon, J.H.; Freed, L.E. and Vunjak-Novakovic, G. (2000) Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AIChE J. 46: 1860–1871.

    Article  CAS  Google Scholar 

  19. Obradovic, B.; Martin, I.; Freed, L.E. and Vunjak-Novakovic, G. (2001) Bioreactor studies of natural and tissue engineered cartilage. Ortopedia Traumatologia Rehabilitacja 3: 181–189.

    CAS  Google Scholar 

  20. Cherry, R.S. and Papoutsakis, T. (1988) Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol. Bioeng. 32: 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  21. Neitzel, G.P.; Nerem, R.M.; Sambanis, A.; Smith, M.K.; Wick, T.M; Brown, J.B.; Hunter, C.; Jovanovic, I.P.; Malaviya, P.; Saini, S. and Tan S. (1998) Cell function and tissue growth in bioreactors: fluid, mechanical and chemical environments. J. Japan Soc. Microgr. Appl. 15(suppl. II): 602–607.

    Google Scholar 

  22. Clift, R.; Grace, J.R. and Weber, M.E. (1978) Bubbles, drops and particles. Academic Press, New York, pp. 142–168

    Google Scholar 

  23. Freed, L.E.; Martin, I. and Vunjak-Novakovic, G. (1999) Frontiers in tissue engineering: in vitro modulation of chondrogenesis. Clin. Orthop. 367S: S46–S58.

    Article  Google Scholar 

  24. Freed, L.E. and Vunjak-Novakovic, G. (2000) Tissue engineering of cartilage. In: Bronzino, J.D. (Ed.) The Biomedical Engineering Handbook, CRC Press, pp. 124-1–124-26.

    Google Scholar 

  25. Vunjak-Novakovic, G. (2003) Fundamentals of tissue engineering: scaffolds and bioreactors. In: Caplan, A.I. (Ed.) Tissue Engineering of Cartilage and Bone, John Wiley, 34–51.

    Google Scholar 

  26. Buckwalter, J.A. and Mankin, H.J. (1997) Articular cartilage, part I: Tissue design and chondrocyte-matrix interactions. J. Bone Joint Surg. Am. 79A: 600–611.

    Google Scholar 

  27. Maroudas, A.I. (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260: 808–809.

    Article  PubMed  CAS  Google Scholar 

  28. Maroudas, A. (1979) Physiochemical properties of articular cartilage. In: Freeman, M.A.R. (Ed.) Adult articular cartilage. Pitman Medical, pp. 215–290.

    Google Scholar 

  29. Armstrong, C.G. and Mow, V.C. (1982) Biomechanics of normal and osteoarthritic articular cartilage. In: Wilson, P.D. and Straub, L.R. (Eds.) Clinical Trends in Orthopaedics. Thieme-Stratton, pp. 189–197.

    Google Scholar 

  30. Mow, V.C. and Ratcliffe, A. (1997) Structure and function of articular cartilage and meniscus. In: Mow, V.C. and Hayes, W.C. (Eds.) Basic Orthopaedic Biomechanics. Lippincott-Raven, pp. 113–177.

    Google Scholar 

  31. Sah, R.L.; Trippel, S.B. and Grodzinsky, A.J. (1996) Differential effects of serum, insulin-like growth factor-I, and fibroblast growth factor-2 on the maintenance of cartilage physical properties during long-term culture. J. Orthop. Res. 14: 44–52.

    Article  PubMed  CAS  Google Scholar 

  32. Lai, W.M.; Mow, V.C. and Roth, V. (1981) Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103: 61–66.

    Article  PubMed  CAS  Google Scholar 

  33. Williamson, A.K.; Chen, A.C. and Sah, R.L. (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J. Orthop. Res. 19: 1113–1121.

    Article  PubMed  CAS  Google Scholar 

  34. Buckwalter, J.A. and Mankin, H.J. (1997) Articular cartilage, part II: Degeneration and osteoarthrosis, repair, regeneration, and transplantation. J. Bone Joint Surg. Am. 79A: 612–632.

    Google Scholar 

  35. Praemer, A.; Furner, S. and Rice, D.P. (1999) Musculoskeletal Conditions in the United States. American Academy of Orthopaedic Surgeons. Rosemont, IL.

    Google Scholar 

  36. Lim, K.; Shahid, M. and Sharif, M. (1996) Recent advances in osteoarthritis. Singapore Med. J. 37: 189–193.

    PubMed  CAS  Google Scholar 

  37. Vunjak-Novakovic, G. and Goldstein, S.A. (2003, in press). Biomechanical principles of cartilage and bone tissue engineering. In: Mow, V.C. and Huiskes, R. (Eds.) Basic Orthopaedic Biomechanics and Mechanobiology, Lippincott-Williams and Wilkens.

    Google Scholar 

  38. Blunk, T.; Sieminski, A.L.; Gooch, K.J.; Courter, D.L.; Hollander, A.P.; Nahir, A.M.; Langer, R.; Vunjak-Novakovic, G. and Freed, L.E. (2002) Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng. 8: 73–84.

    Article  PubMed  CAS  Google Scholar 

  39. Pei, M.; Seidel, J.; Vunjak-Novakovic, G. and Freed, L.E. (2002) Growth factors for sequential cellular de-and re-differentiation in tissue engineering. Biochem. Bioph. Res. Co. 294: 149–154.

    Article  CAS  Google Scholar 

  40. Martin, I.; Shastri, V.P.; Padera, R.F.; Yang, J.; Mackay, A.J.; Langer, R.; Vunjak-Novakovic, G. and Freed, L.E. (2001) Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J. Biomed. Mater. Res. 55: 229–235.

    Article  PubMed  CAS  Google Scholar 

  41. Madry, H.; Padera, R.; Seidel, J.; Langer, R.; Freed, L.E.; Trippel, S.B. and Vunjak-Novakovic, G. (2002) Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum. Gene Ther. 13: 1621–1630.

    Article  PubMed  CAS  Google Scholar 

  42. Martin, I.; Padera, R.F.; Vunjak-Novakovic, G. and Freed, L.E. (1998) In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J. Orthop. Res. 16: 181–189.

    Article  PubMed  CAS  Google Scholar 

  43. Martin, I.; Shastri, V.; Padera, R.F.; Langer, R.; Vunjak-Novakovic, G. and Freed, L.E. (1999) Bone marrow stromal cell differentiation on porous polymer scaffolds. Trans. Orthop. Res. Soc. 24: 57.

    Google Scholar 

  44. Shastri, V.P.; Martin, I. and Langer, R. (2000) Macroporous polymer foams by hydrocarbon templating. Proc. Natl. Acad. Sci. USA 97: 1970–1975.

    Article  PubMed  CAS  Google Scholar 

  45. Lipshitz, H.; Etheredge, R. 3rd and Glimcher, M.J. (1976) Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. J. Bone Joint Surg. Am. 58: 1149–1153.

    PubMed  CAS  Google Scholar 

  46. Frost, H.M. (1989) The biology of fracture healing. An overview for clinicians. Part II. Clin. Orthop. 248: 294–309.

    PubMed  Google Scholar 

  47. Kempson, G.E. (1991) Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim. Biophys. Acta 1075: 223–230.

    PubMed  CAS  Google Scholar 

  48. Einhorn, T.A. (1994) Enhancement of fracture healing by molecular or physical means: An overview. In: Brighton, C.T.; Friedlaender G. and Lane, J.M. (Eds.) Bone formation and repair. American Academy of Orthopaedic Surgeons, pp. 223–238.

    Google Scholar 

  49. Baltzer, A.W.A.; Lattermann, C.; Whalen, J.D.; Wooley, P.; Weiss, K.; Grimm, M.; Ghivizzani, S.C.; Robbins, P.D. and Evans, C.H. (2000) Genetic enhancement of fracture repair: Healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther. 7: 734–739.

    Article  PubMed  CAS  Google Scholar 

  50. McKibbin, B. (1978) The biology of fracture healing in long bones. J. Bone Joint Surg. Br. 60B: 150–162.

    Google Scholar 

  51. Kawamura, S.; Wakitani, S.; Kimura, T.; Maeda, A.; Caplan, A.I.; Shino, K. and Ochi, T. (1998). Articular cartilage repair-rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop. Scand. 69: 56–62.

    Article  PubMed  CAS  Google Scholar 

  52. Wakitani, S.; Goto, T.; Young, R.G.; Mansour, J.M.; Goldberg, V.M. and Caplan, A.I. (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng. 4: 429–444.

    PubMed  CAS  Google Scholar 

  53. Elder, S.H.; Kimura, J.H.; Soslowsky, L.J.; Lavagnino, M. and Goldstein, S.A. (2000) Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J. Orthop. Res. 18: 78–86.

    Article  PubMed  CAS  Google Scholar 

  54. Pei, M.; Solchaga, L.A.; Seidel, J.; Zeng, L.; Vunjak-Novakovic, G.; Caplan, A.I. and Freed, L.E. (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J. 16: 1691–1694.

    PubMed  CAS  Google Scholar 

  55. Vunjak-Novakovic, G.; Obradovic, B.; Martin, I. and Freed, L.E. (2002) Bioreactor studies of native and tissue engineered cartilage. Biorheology 39: 259–268.

    PubMed  CAS  Google Scholar 

  56. Martin, I., Obradovic, B., Freed, L.E. and Vunjak-Novakovic, G. (1999) A method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Ann. Biomed. Eng. 27: 656–662.

    Article  PubMed  CAS  Google Scholar 

  57. Mauck, R.L.; Soltz, M.A.; Wang, C.C.B.; Wong, D.D.; Chao, P.G.; Valhmu, W.B.; Hung, C.T. and Ateshian, G.A. (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122: 252–260.

    Article  PubMed  CAS  Google Scholar 

  58. Mauck, R.L.; Seyhan, S.L.; Ateshian, G.A. and Hung, C.T. (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30: 1046–1056.

    Article  PubMed  Google Scholar 

  59. Mauck, R.L.; Nicoll, S.B.; Seyhan, S.L.; Ateshian, G.A. and Hung, C.T. (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9: 597–611.

    Article  PubMed  CAS  Google Scholar 

  60. Obradovic, B.; Martin, I.; Padera, R.F.; Treppo, S.; Freed, L.E. and Vunjak-Novakovic, G. (2001) Integration of engineered cartilage. J. Orthop. Res. 19: 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  61. Buschmann, M.D.; Gluzband, Y.A.; Grodzinsky, A.J.; Kimura, J.H. and Hunziker, E.B. (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10: 745–758.

    Article  PubMed  CAS  Google Scholar 

  62. Gooch, K.J.; Blunk, T.; Courter, D.L.; Sieminski, A.L.; Bursac, P.M.; Vunjak-Novakovic, G. and Freed, L.E. (2001) IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem. Bioph. Res. Co. 286: 909–915.

    Article  CAS  Google Scholar 

  63. Obradovic, B.; Bugarski, D.; Petakov, M.; Bugarski, B.; Meinel, L. and Vunjak-Novakovic, G. (2003) Effects of bioreactor hydrodynamics on native and tissue engineered cartilage. Proceedings of the 1st International Congress on Bioreactor Technology in Cell, Tissue Culture and Biomedical Applications, S. Sorvari (Ed.) July 14–18, 2003, Tampere, Finland, pp. 61–70.

    Google Scholar 

  64. Hascall, V.C.; Sandy, J.D. and Handley, C.J. (1999) Regulation of proteoglycan metabolism in articular cartilage. In: Archer, C.W. (Ed.) Biology of the synovial joint. Harwood Academic Publishers, Chapter 7.

    Google Scholar 

  65. MacKenna, D.A.; Omens, J.H.; McCulloch, A.D. and Covell, J.W. (1994) Contribution of collagen matrix to passive left ventricular mechanics in isolated rat heart. Am. J. Physiol. 266: H1007–H1018.

    PubMed  CAS  Google Scholar 

  66. Brilla, C.G.; Maisch, B.; Rupp, H.; Sunck, R.; Zhou, G. and Weber, K.T. (1995) Pharmacological modulation of cardiac fibroblast function. Herz 20: 127–135.

    PubMed  CAS  Google Scholar 

  67. Gillum, R.F. (1994). Epidemiology of congenital heart disease in the United States. Am. Heart J. 127: 919–927.

    Article  PubMed  CAS  Google Scholar 

  68. Hoffman, J.I. (1995) Incidence of congenital heart disease: I. Postnatal incidence. Pediatr. Cardiol. 16:103–113.

    Article  PubMed  CAS  Google Scholar 

  69. Hoffman, J.I. (1995) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr. Cardiol. 16:155–165.

    Article  PubMed  CAS  Google Scholar 

  70. Lysaght, M.J. and Reyes, J. (2001) The growth of tissue engineering. Tissue Eng. 7: 485–493.

    Article  PubMed  CAS  Google Scholar 

  71. Rich, M. (1997) Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J. Am. Geriatr. Soc. 45: 968–974.

    PubMed  CAS  Google Scholar 

  72. Dominguez, L.; Parriaello, G.; Amato, P. and Licata, G. (1999) Trends of congestive heart failure: epidemiology contrast with clinical trial results. Cardiologia 44: 801–808.

    PubMed  CAS  Google Scholar 

  73. Evans, R.W. (2000) Economic impact of mechanical cardiac assistance. Prog. Cardiovasc. Dis. 43: 81–94.

    Article  PubMed  CAS  Google Scholar 

  74. Soonpaa, M.H.; Koh, G.Y.; Klug, M.G. and Field, L.J. (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264: 98–101.

    PubMed  CAS  Google Scholar 

  75. Scorsin, M.; Marotte, F.; Sabri, A.; Le Dref, O.; Demirag, M.; Samuel, J.-L.; Rappaport, L. and Measche, P. (1996) Can grafted cardiomyocytes colonize peri-infarct myocardial areas? Circulation 94: II337–II340.

    PubMed  CAS  Google Scholar 

  76. Connold, A.L.; Frischknecht, R.; Dimitrakos, M. and Vrbova, G. (1997) The survival of embryonic cardiomyocytes transplanted into damaged host myocardium. J. Muscle Res. Cell Motil. 18: 63–70.

    Article  PubMed  CAS  Google Scholar 

  77. Zimmermann, W.H.; Schneiderbanger, K.; Schubert, P.; Didie, M.; Munzel, F.; Heubach, J.F.; Kostin, S.; Nehuber, W.L. and Eschenhagen, T. (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90: 223–230.

    Article  PubMed  CAS  Google Scholar 

  78. Wang, Y.; Ameer, G.A.; Sheppard, B.J. and Langer, R. (2002) A tough biodegradable elastomer. Nat. Biotechnol. 20: 602–606.

    Article  PubMed  CAS  Google Scholar 

  79. Hubbell, J.A. (1999) Bioactive biomaterials. Curr. Opin. Biotechnol. 10: 123–129.

    Article  PubMed  CAS  Google Scholar 

  80. Niklason, L.E. (1999) Replacement arteries made to order. Science 286: 1493–1494.

    Article  PubMed  CAS  Google Scholar 

  81. Niklason, L.E. (2000) Engineering of bone grafts. Nat. Biotechnol. 18: 929–930.

    Article  PubMed  CAS  Google Scholar 

  82. Oberpenning, F.; Meng, J.; Yoo, J.J. and Atala, A. (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17: 149–155.

    Article  PubMed  CAS  Google Scholar 

  83. L’Heureux, N.; Paquet, S.; Labbe, R.; Germain, L. and Auger, F.A. (1998) A completely biological tissue-engineered human blood vessel. FASEB J. 12: 47–56.

    Google Scholar 

  84. Niklason, L.E.; Gao, J.; Abbott, W.M.; Hirschi, K.K.; Houser, S.; Marini, R. and Langer, R. (1999) Functional arteries grown in vitro. Science 284: 489–493.

    Article  PubMed  CAS  Google Scholar 

  85. Carrier, R.L.; Papadaki, M.; Rupnick, M.; Schoen, F.J.; Bursac, N.; Langer, R.; Freed, L.E. and Vunjak-Novakovic, G. (1999) Cardiac tissue engineering: cell seeding, cultivation parameters and tissue construct characterization. Biotechnol. Bioeng. 64: 580–589.

    Article  PubMed  CAS  Google Scholar 

  86. Papadaki, M.; Bursac, N.; Langer, R.; Merok, J.; Vunjak-Novakovic, G. and Freed, L.E. (2001) Tissue engineering of functional cardiac muscle: molecular, structural and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280: H168–H178.

    PubMed  CAS  Google Scholar 

  87. Bursac, N.; Papadaki, M.; Cohen, R.J.; Schoen, F.J.; Eisenberg, S.R.; Carrier, R.; Vunjak-Novakovic, G. and Freed, L.E. (1999) Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 277: H433–H444.

    CAS  Google Scholar 

  88. Bursac, N.; Papadaki, M.; White, J.A.; Eisenberg, S.R.; Vunjak-Novakovic, G. and Freed, L.E. (2003) Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng. 9: 1243–1253.

    Article  PubMed  CAS  Google Scholar 

  89. Radisic, M.; Euloth, M.; Yang, L.; Langer, R.; Freed, L.E. and Vunjak-Novakovic, G. (2003) High density seeding of myocyte cells for tissue engineering. Biotechnol. Bioeng. 82: 403–414.

    Article  PubMed  CAS  Google Scholar 

  90. Kofidis, T.; Akhyari, P.; Boublik, J.; Theodorou, P.; Martin, U.; Ruhparwar, A.; Fischer, S.; Eschenhagen, T.; Kubis, H.P.; Kraft, T.; Leyh, R. and Haverich, A. (2002) In vitro engineering of heart muscle: Artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 124: 63–69.

    Article  PubMed  CAS  Google Scholar 

  91. Li, R.-K.; Yau, T.M.; Weisel, R.D.; Mickle, D.A.G.; Sakai, T.; Choi, A. and Jia, Z.Q. (2000) Construction of a bioengineered cardiac graft. J. Thorac. Cardiovasc. Surg. 119: 368–375.

    Article  PubMed  CAS  Google Scholar 

  92. Dar, A.; Shachar, M.; Leor, J. and Cohen, S. (2002) Cardiac tissue engineering Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol. Bioeng. 80: 305–312.

    Article  PubMed  CAS  Google Scholar 

  93. Akins, RE.; Boyce, R.A.; Madonna, M.L.; Schroedl, N.A.; Gonda, S.R.; McLaughlin, T.A.; Hartzell, C.R.; (1999) Cardiac organogenesis in vitro: reestalishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng. 5:103–18.

    PubMed  CAS  Google Scholar 

  94. Eschenhagen, T.; Fink, C.; Remmers, U.; Scholz, H.; Wattchow, J.; Weil, J.; Zimmermann, W.; Dohmen, H.H.; Schafer, H.; Bishopric, N.; Wakatsuki, T.; Elson, E.L. (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 11:683–94.

    PubMed  CAS  Google Scholar 

  95. Fink, C.; Ergun, S.; Kralisch, D.; Remmers, U.; Weil, J. and Eschenhagen, T. (2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14: 669–679.

    PubMed  CAS  Google Scholar 

  96. Zimmermann, W.H.; Fink, C.; Kralisch, D.; Remmers, U.; Weil, J.; Eschenhagen, T. (2000) Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng. 68:106–14.

    Article  PubMed  CAS  Google Scholar 

  97. Carrier, R.L.; Rupnick, M.; Langer, R.; Schoen, F.J.; Freed, L.E. and Vunjak-Novakovic, G. (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 8: 175–188.

    Article  PubMed  CAS  Google Scholar 

  98. Radisic, M.; Yang, L.; Boublik, J.; Cohen, R.J.; Langer, R.; Freed, L.E. and Vunjak-Novakovic, G. (2004) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286: H507–H516.

    Article  PubMed  CAS  Google Scholar 

  99. van Luyn, M.J.; Tio, R.A.; Gallego, Y.; van Seijen, X.J.; Plantinga, J.A.; de Leij, L.F.; DeJongste, M.J. and van Wachem, P.B. (2002) Cardiac tissue engineering: characteristics of in unison contracting two-and three-dimensional neonatal rat ventricle cell (co)-cultures. Biomaterials. 24: 4793–801.

    Google Scholar 

  100. Carrier, R.L.; Rupnick, M.; Langer, R.; Schoen, F.J.; Freed, L.E. and Vunjak-Novakovic, G. (2002) Effects of oxygen on engineered cardiac muscle. Biotechnol. Bioeng. 78: 617–625.

    Article  PubMed  CAS  Google Scholar 

  101. Akhyari, P.; Fedak, P.W.M.; Weisel, R.D.; Lee, T.Y.J.; Verma, S.; Mickle, D.A.G. and Li, R.K. (2002) Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106: I137–I142.

    Article  PubMed  Google Scholar 

  102. Fournier, R.L. (1998) Basic Transport Phenomena in Biomedical Engineering. Philadelphia: Taylor & Francis; pp. 24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Obradovic, B., Radisic, M., Vunjak-Novakovic, G. (2005). Tissue Engineering of Cartilage and Myocardium. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_6

Download citation

Publish with us

Policies and ethics