Skip to main content

Production of Biologics from Animal Cell Cultures

  • Chapter
Applications of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ernst & Young. (2000) The economic contributions of the biotechnology industry to the US economy. http://www.bio.org/news/ernstyoung.pdf. (accessed 29th October 2002). Biotechnology Industry Organizer.

    Google Scholar 

  2. Butler, M. (1987) Growth limitations in microcarrier cultures. Adv. Biochem. Eng. Biotechnol. 34: 57–84.

    PubMed  CAS  Google Scholar 

  3. Hu, W.S. and Peshwa, M.V. (1991) Animal Cell Bioreactors-Recent advances and challenges to scale-up. Can. J. Chem. Eng. 69: 409–420.

    Article  CAS  Google Scholar 

  4. van Wezel, A.L. (1967) Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216(110): 64–65.

    PubMed  Google Scholar 

  5. Griffiths, B. (1992) Alternative strategies to the scale-up of animal cells. Ann. NY Acad. Sci. 665: 364–370.

    PubMed  CAS  Google Scholar 

  6. Griffiths, J.B. (1988) Overview of cell culture systems and their Scale-up. In: Spier, R.E. and Griffiths, J.B. (Eds.), Animal Cell biotechnology. Academic Press Limited, London, UK; pp. 179–220.

    Google Scholar 

  7. Chu, L. and Robinson, D.K. (2001) Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 12(2): 180–187.

    Article  PubMed  CAS  Google Scholar 

  8. Griffiths, J.B. (1985) Cell products: An overview. In: Spier, R.E. and Griffiths, J.B. (Eds.), Animal Cell biotechnology. Academic Press Limited, London, UK; pp. 3–12.

    Google Scholar 

  9. Hu, Y.C.; Kaufman, J.; Cho, M.W.; Golding, H. and Shiloach, J. (2000) Production of HIV-1 gp120 in packed-bed bioreactor using the vaccinia virus/T7 expression system. Biotechnol. Prog. 16(5): 744–750.

    Article  PubMed  CAS  Google Scholar 

  10. Kratje, R.B. and Wagner, R. (1992) Evaluation of production of recombinant Human Interleukin-2 in fluidized bed bioreactor. Biotechnol. Bioeng. 39: 233–242.

    Article  CAS  Google Scholar 

  11. Wang, M.D.; Yang, M.; Huzel, N. and Butler, M. (2002) Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotechnol. Bioeng. 77(2): 194–203.

    Article  PubMed  CAS  Google Scholar 

  12. Knazek, R.A.; Gullino, P.M.; Kohler, P.O. and Dedrick, R.L. (1972) Cell culture on artificial capillaries: An approach to tissue growth in Vitro. Science 178: 65–67.

    PubMed  CAS  Google Scholar 

  13. Kessler, N.; Thomas, G.; Gerentes, L.; Delfosse, G. and Aymard, M. (1997) Hybridoma growth in a new generation hollow fibre bioreactor: antibody productivity and consistency. Cytotechnol. 24: 109–119.

    Article  CAS  Google Scholar 

  14. Thelwell, P.E. and Brindle, K.M. (1999) Analysis of CHO-K1 cell growth in a fixed bed bioreactor using magnetic resonance spectroscopy and imaging. Cytotechnol. 30: 121–132.

    Article  Google Scholar 

  15. Williams, S.N.O.; Callies, R.M. and Brindle, K.M. (1997) Mapping of oxygen tension and cell distribution in a hollow-fiber bioreactor using magnetic resonance imaging. Biotechnol. Bioeng. 56(1):56–61.

    Article  CAS  Google Scholar 

  16. Koska, J.; Bowen, B.D. and Piret, J.M. (1997) Protein transport in packed-bed ultrafiltration hollow-fibre bioreactors. Chem. Eng. Sci. 52(14): 2251–2263.

    Article  CAS  Google Scholar 

  17. Fassnacht, D. and Portner, R. (1999) Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed-bed reactors. J. Biotechnol. 72(3): 169–184.

    Article  PubMed  CAS  Google Scholar 

  18. Glacken, M.W.; Fleischaker, R.J. and Sinskey, A.J. (1983) Large-scale production of mammalian cells and their products: Engineering principles and barriers to scale-up. Ann. NY Acad. Sci. 413: 355–373.

    PubMed  CAS  Google Scholar 

  19. Knight, P. (1989) Hollow fiber bioreactors for mammalian cell culture. Bio/Technol. 7: 459–461.

    Article  CAS  Google Scholar 

  20. Tzianbos, A.O. and Smith, R. (1995) Use of hollow fibre bioreactor for production in problematic cell lines. UK Product Review, 32.

    Google Scholar 

  21. Fassnacht, D.; Rössing, S.; Singh, R.P.; Al Rubeai, M. and Pörtner, R. (1999) Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnol. 30: 95–105.

    Article  CAS  Google Scholar 

  22. Marx, U. (1998) Capitalising on Capillaries. Laboratory Technology International.

    Google Scholar 

  23. Starling, E.H. (1896) On the absorption of fluids from the convective tissue space. J. Physiol. 19: 312–326.

    CAS  Google Scholar 

  24. Al Rubeai, M.; Emery, A.N.; Chalder, S. and Jan, D.C. (1992) Specific monoclonal antibody productivity and the cell cycle-comparisons of batch, continuous and perfusion cultures. Cytotechnol. 9(1–3): 85–97.

    Google Scholar 

  25. Borys, M.C.; Linzer, D.I. and Papoutsakis, E.T. (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnol. (NY) 11(6): 720–724.

    Article  CAS  Google Scholar 

  26. Hayter, P.M.; Kirkby, N.F. and Spier, R.E. (1992) Relationship between hybridoma growth and monoclonal antibody production. Enzyme Microb. Technol. 14(6): 454–461.

    Article  PubMed  CAS  Google Scholar 

  27. Piret, J.M. and Cooney, C.L. (1990) Mammalian cell and protein distributions in ulltrafiltration hollowfiber bioreactors. Biotechnol. Bioeng. 36: 902–910.

    Article  CAS  Google Scholar 

  28. Bratch, K. and Al Rubeai, M. (2001) Culture of primary rat hepatocytes within a flat hollow fibre cassette for potential use as a component of a bioartificial liver support system. Biotechnol. Lett. 23: 137–141.

    Article  CAS  Google Scholar 

  29. Nilsson, K. and Mosbach, K. (1980) Preparation of immobilized animal cells. FEBS Lett. 118(1): 145–150.

    Article  PubMed  CAS  Google Scholar 

  30. Lim, F. and Sun, A.M. (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472): 908–910.

    PubMed  CAS  Google Scholar 

  31. Rupp, R.G. (1985) Use of cellular microencapsulation in large-scale production of monoclonal antibodies. In: Feder, J. and Tolbert, W.R. (Eds.), Large-scale mammalian cell culture. Academic Press Inc., London, UK; pp. 19–38.

    Google Scholar 

  32. Al Rubeai, M.; Musgrave, S.C.; Lambe, C.A.; Walker, A.G.; Evans, N.H. and Spier, R.E. (1990) Methods for the estimation of the number and quality of animal cells immobilized in carbohydrate gels. Enzyme Microb. Technol. 12(6): 459–463.

    Article  Google Scholar 

  33. Al Rubeai, M. and Spier, R.E. (1989) Quantitative cytochemical analysis of immobilised hybridoma cells. Appl. Microbiol. Biotechnol. 31: 430–433.

    Google Scholar 

  34. Al Rubeai, M.; Rookes, S. and Emery, A.N. (1990) Studies of cell proliferation and monoclonal antiody synthesis and secretion in alginate-entrapped hybridoma cells. In: de Bont, J.A.M.; Visser, J.; Mattiasson, B. and Tramper, J. (Eds.), Physiology of Immobilised Cells. Elsevier Science Publishers, Amsterdam, The Netherlands; pp. 181–188.

    Google Scholar 

  35. Wang, G.; Zhang, W.; Jacklin, C.; Freedman, D.; Eppstein, L. and Kadouri, A. (1992) Modified CelliGen-packed bed bioreactors for hybridoma cell cultures. Cytotechnol. 99(1–3): 41–49.

    Google Scholar 

  36. Yamaji, H.; Fukuda, H.; Nojima, Y. and Webb, C. (1989) Immobilisation of anchorage-independent animal cells using reticulated polyvinyl formal resin biomass support particles. Appl. Microbiol. Biotechnol. 30: 609–613.

    Article  CAS  Google Scholar 

  37. Kennard, M.L. and Piret, J.M. (1994) Glycolipid membrane anchored recombinant protein production from CHO cells cultured on porous microcarriers. Biotechnol. Bioeng. 44: 45–54.

    Article  CAS  Google Scholar 

  38. Yamaji, H. and Fukuda, H. (1992) Growth and death behaviour of anchorage-independent animal cells immobilized within porous support matrices. Appl. Microbiol. Biotechnol. 37: 244–251.

    Article  PubMed  CAS  Google Scholar 

  39. Preissmann, A.; Wiesmann, R.; Buchholz, R.; Werner, R.G. and Noe, W. (1997) Investigations on oxygen limitations of adherant cells growing on macroporous microcarriers. Cytotechnol. 24: 121–134.

    Article  CAS  Google Scholar 

  40. Berry, J.M.; Barnabe, N.; Coombs, K.M. and Butler, M. (1999) Production of reovirus type-1 and type-3 from Vero cells grown on solid and macroporous microcarriers. Biotechnol. Bioeng. 62(1): 12–19.

    Article  PubMed  CAS  Google Scholar 

  41. Xiao, C.; Huang, Z.; Li, W.; Hu, X.; Qu, W.; Gao, L. and Liu, G. (1999) High density and scale-up cultivation of recombinant CHO cell line and hybridomas with porous microcarrier Cytopore. Cytotechnol. 30: 143–147.

    Article  CAS  Google Scholar 

  42. Yamaji, H. and Fukuda, H. (1994) Growth kinetics of animal cells immobilized within porous support particles in a perfusion culture. Appl. Microbiol. Biotechnol. 42: 531–535.

    Article  PubMed  CAS  Google Scholar 

  43. Wagner, R.; Marc, A.; Engasser, J.M. and Einsele, A. (1992) The use of lactate dehydrogenase (LDH) release kinetics for the evaluation of death and grwoth of mammalian cells in perfusion reactors. Biotechnol. Bioeng. 39: 320–326.

    Article  CAS  Google Scholar 

  44. Kennard, M.L.; Piret, J.M. (1995) Membrane anchored protein production from spheroid, porous, and solid microcarrier Chinese Hamster Ovary cell cultures. Biotechnol. Bioeng. 47: 550–556.

    Article  CAS  Google Scholar 

  45. Nikolai, T.J. and Hu, W.S. (1992) Cultivation of mammalian cells on macroporous microcarriers. Enzyme Microb. Technol. 14: 203–208.

    Article  PubMed  CAS  Google Scholar 

  46. Schweikart, F.; Jones, R.; Jaton, J-C. and Hughes, G.J. (1999) Rapid structural characterisation of a murine monoclonal IgA α chain: heterogeneity in the oligosaccharide structures at a specific site in samples produced in different bioreactor systems. J. Biotechnol. 69: 191–201.

    Article  PubMed  CAS  Google Scholar 

  47. Yamaji, H. and Fukuda, H. (1997) Continuous IgG production by myeloma cells immobilized within porous support particles. J. Ferment. Bioeng. 83(5): 489–491.

    Article  CAS  Google Scholar 

  48. Kratje, R.B.; Reimann, A.; Hammer, J. and Wagner, R. (1994) Cultivation of recombinant baby hamster kidney cells in a fluidized bed bioreactor system with porous borosilicate glass. Biotechnol. Prog. 10(4):410–420.

    Article  PubMed  CAS  Google Scholar 

  49. Frame, K.K. and Hu, W.S. (1990) The loss of antibody productivity in continuous culture of hybridoma cells. Biotechnol. Bioeng. 35: 469–476.

    Article  CAS  Google Scholar 

  50. Leelavatcharamas V.; Emery, A.N. and Al Rubeai, M. (1994) Growth and interferon-gamma production in batch culture of CHO cells. Cytotechnol. 15(1–3): 65–71.

    Article  CAS  Google Scholar 

  51. Goldman, M.H.; James, D.C.; Rendall, M.; Ison, A.P.; Hoare, M. and Bull, A.T. (1998) Monitoring recombinant human interferon-gamma N-glycosylation during perfused fluidized-bed and stirred-tank batch culture of CHO cells. Biotechnol. Bioeng. 60(5): 596–607.

    Article  PubMed  CAS  Google Scholar 

  52. Kong, D.; Cardak, S.; Chen, M.; Gentz, R. and Zhang, J. (1999) High cell density and productivity culture of Chinese Hamster Ovary cells in a fluidized bed bioreactor. Cytotechnol. 29: 215–220.

    Article  CAS  Google Scholar 

  53. Kadouri, A. and Zipori, D. (1989) Production of anti-leukemic factor from Stroma cells in a stationary bed reactor on a new cell support. In: Spier, R.E.; Griffiths, J.B.; Stephenne, J. and Rooy, P.J. (Eds.), Advances in animal cell biology and technology for bioprocesses. Courier International Ltd., Tiptree, Essex, UK; pp. 327–330.

    Google Scholar 

  54. Kang, S-H.; Lee, G.M. and Kim, B-G. (2000) Justification of continuous packed-bed reactor for retroviral vector production from amphotopic ΨCRIP murine producer cell. Cytotechnol. 34: 151–158.

    Article  CAS  Google Scholar 

  55. Kaufman, J.; Wang, G;. Zhang, W.; Valle, M.A. and Shiloach, J. (2000) Continuous production and recovery of recombinant Ca2+ binding receptor from HEK 293 cells using perfusion through a packed bed bioreactor. Cytotechnol. 33: 3–11.

    Article  CAS  Google Scholar 

  56. Merten, O.W.; Cruz, P.E; Rochette, C.; Geny-Fiamma, C.; Bouquet, C.; Goncalves, D.; Danos, O. and Carrondon, J. (2001) Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol. Prog. 17(2): 326–335.

    Article  PubMed  CAS  Google Scholar 

  57. Cong, C.; Chang, Y.; Deng, J.; Xiao, C.; Su, Z. (2001) A novel scale-up method for mammalian cell culture in packed-bed bioreactor. Biotechnology Lett. 23: 881–885.

    Article  CAS  Google Scholar 

  58. Park, S. and Stephanopoulos, G. (1993) Packed bed bioreactor with porous ceramic beads for animal cell culture. Biotechnol. Bioeng. 41: 25–34.

    Article  CAS  Google Scholar 

  59. Chiou, T.W.; Murakami, S. and Wang, D.I.C. (1991) A fiber-bed bioreactor for anchorage-dependent animal cell culture: Part 1. Bioreactor design and operations. Biotechnol. Bioeng. 37: 755–761.

    Article  CAS  Google Scholar 

  60. McTaggart, S. and Al Rubeai, M. (2000) Effects of culture parameters on the production of retroviral vectors by a human packaging cell line. Biotechnol. Prog. 16(5): 859–865.

    Article  PubMed  CAS  Google Scholar 

  61. Warnock, J.N. (2002) Optimisation of retrovirus production systems for gene therapy applications. Thesis, The University of Birmingham, UK.

    Google Scholar 

  62. Shi, Y.; Ryu, D.D.Y. and Park, S. (1992) Performance of mammalian cell culture bioreactor with a new impeller design. Biotechnol. Bioeng. 40(2): 260–270.

    Article  CAS  Google Scholar 

  63. Rodrigues, M.T.A.; Vilaça, P.R.; Garbuio, A.; Takagi, M.; Barbosa, Jr S.; Léo P.; Laignier, N.S.; Silva, A.A.P. and Moro, A.M. (1999) Glucose uptake rate as a tool to estimate hybridoma growth in a packed bed bioreactor. Bioprocess Eng. 21: 543–546.

    Article  CAS  Google Scholar 

  64. Portner, R.; Bohmann, A.; Ludemann, I. and Markl, H. (1994) Estimation of specific glucose uptake rates in cultures of hybridoma cells. J. Biotechnol. 34(3): 237–246.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Warnock, J., Al-Rubeai, M. (2005). Production of Biologics from Animal Cell Cultures. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_24

Download citation

Publish with us

Policies and ethics