Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greer, G.G. (1989) Red meats, poultry and fish. In: McKellar, R.C. (Ed.) Enzymes of psychrotrophs in raw food. CRC Press, Inc., Boca Raton, FL; pp 267–292.

    Google Scholar 

  2. Dainty, R.H. and Mackey, B.M. (1992) The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. J. Appl. Bacteriol. 73: 103S–114S.

    Google Scholar 

  3. Urbain, W.M. and Campbell, J.F. (1987) Meat preservation. In: Price, J.F. and Schweigert, B.S. (Eds.) The science of meat and meat products, 3rd edition. Food & Nutrition Press, inc. Westport, CT, USA; pp. 371–412.

    Google Scholar 

  4. Gill, C.O. and Newton, K.G. (1978) The ecology of bacterial spoilage of fresh meat at chill temperatures. Meat Sci. 2: 207–217.

    Article  Google Scholar 

  5. Stiles, M.E. (1991) Modified atmosphere packaging of meat, poultry and their products. In: Ooraikul, B. and Stiles, M.E. (Eds.) Modified atmosphere packaging of food. Ellis Horwood Ltd., Chichester, England; pp. 118–147.

    Google Scholar 

  6. Lambert, A.D; Smith, J.P. and Dodds, K.L. (1991) Shelf life extension and microbiological safety of fresh meat–a review. Food Microbiol. 8: 267–297.

    Article  Google Scholar 

  7. Todd, E.C.D. and Harwig, J. (1996) Microbial risk analysis of food in Canada. J. Food Prot. 59suppl., 10–18.

    Google Scholar 

  8. Ray, B. and Daeschel, M. (1992) Food biopreservatives of microbiological origin. CRC Press Inc., Boca Raton, FL.

    Google Scholar 

  9. Roller, S. (1995) The quest for natural antimicrobials as novel means of food preservation: status report on a European research project. Int. Biodeterior. Biodegrad. 36: 333–345.

    Article  Google Scholar 

  10. Zeuthen, P. (1995) Historical aspects of meat fermentations. In: Campbell-Platt, G. and Cook, P.E. (Eds.) Fermented meats, chap. 3. Blackie Academic & Professional, London, UK; pp.53–68.

    Google Scholar 

  11. Quinton, R.D.; Cornforth, D.P.; Hendricks, D.G.; Brennand, C.P. and Su, Y.K. (1997) Acceptability and composition of some acidified meat and vegetable stick products. J. Food Sci. 62: 1250–1254.

    CAS  Google Scholar 

  12. Canadian Food Inspection Agency (1999) Fermented meat products. In: Meat hygiene manual, 4, Meat and Processed Animal Products Division, Government of Canada, Ottawa, Canada, pp. 111–114.

    Google Scholar 

  13. Hinkens, J.C.; Faith, N.G.; Lorang, T.D.; Bailey, P.; Buege, D.; Kaspar, C.W. and Luchansky, J.B. (1996) Validations of pepperoni processes for control of Escherichia coli 0157:H7. J. Food Prot. 59: 1260–1266.

    Google Scholar 

  14. Incze, K. (1998) Dry fermented sausages. Meat Sci. 49: S169–S177.

    Article  Google Scholar 

  15. Lücke, F.-K. (1998) Fermented sausages. In: Wood, B.J.B. (Ed.) Microbiology of fermented foods, Vol. 2, Chap. 14. Blackie Academic & Professional, London, UK.

    Google Scholar 

  16. Rhodehamel, E.J. (1992) FDA’s concerns with sous vide processing. Food Technol. 46(12): 73–76.

    Google Scholar 

  17. Saucier, L. (1999) Meat safety: Challenges for the future. Outlook Agric. 28: 77–82.

    Google Scholar 

  18. Lambert, A.D.; Smith, J.P. and Dodds, K.L. (1991) Effect of headspace CO2 concentration on toxin production by Clostridium botulinum in MAP, irradiated fresh pork. J. Food Prot. 54, 588–592.

    Google Scholar 

  19. Stiles, M.E. (1994) Potential for biological control of agents of foodborne disease. Food Res. Int. 27: 245–250.

    Article  Google Scholar 

  20. Andersen, L. (1995) Biopreservation with FloraCarn L-2. Fleischwirtschaft 75: 1327–1329.

    Google Scholar 

  21. Kotzekidou, P. and Bloukas, J.G. (1996) Effect of protective cultures and packaging film permeability on shelf-life of sliced vacuum-packed cooked ham. Meat Sci. 42: 333–345.

    Article  Google Scholar 

  22. Andersen, L. (1997) Bioprotective culture for fresh sausage. Fleischwirtschaft 77: 635–637.

    Google Scholar 

  23. Juven, B.J.; Baredoot, S.F.; Pierson, M.D.; McCaskill, L.H. and Smith, B. (1998) Growth and Survival of Listeria monocytogenes in vacuum-package ground beef inoculated with Lactobacillus alimentarius FloraCarn L-2. J. Food Prot. 61: 551–556.

    PubMed  CAS  Google Scholar 

  24. Kotzekidou, P. and Bloukas, J.G. (1998) Microbial and sensory changes in vacuum-packed frankfurter type sausage by Lactobacillus alimentarius and fate of inoculated Salmonella enteritidis. Food Microbiol. 15: 101–111.

    Article  Google Scholar 

  25. Hugas, M. and Monfort, J.M. (1997) Bacterial starter cultures for meat fermentation. Food Chem. 59(4): 547–554.

    Article  CAS  Google Scholar 

  26. Arihara, K.; Ota, H.; Itoh, M.; Kondo, Y.; Sameshima, T.; Yamanaka, H.; Akimoto, M.; Kanai, S. and Miki, T. (1998) Lactobacillus acidophilus group lactic acid bacteria applied to meat fermentation. J. Food Sci. 63(3): 544–547.

    CAS  Google Scholar 

  27. Hammes, W.P. and Hertel, C. (1998) New developments in meat starter cultures. Meat Sci. 49(Suppl. 1): S125–S138.

    Article  Google Scholar 

  28. Kailasapathy, K. and Rybka, S. (1997) L. acidophilus and Bifidobacterium ssp.-their therapeutic potential and survival in yogurt. Aust. J. Dairy Technol. 52: 28–35.

    Google Scholar 

  29. Mattila-Sandholm; Blum, S.; Collins, J.K.; Crittenden, R.; de Vos, W.; Dunne, C.; Fondén, R.; Grenov, G.; Isolauri, E.; Kiely, B.; Marteau, P.; Morelli, L.; Ouwehand, A.; Reniero, R.; Saarela, M.; Salminen, S.; Saxelin, M.; Schiffrin, E.; Shanahan, F.; Vaughan, E. and von Wright, A. (1999) Probiotics: towards demonstrating the efficacy. Trends in Foods Science and Technology 10: 393–399.

    Article  CAS  Google Scholar 

  30. De Roos, N.M. and Katan, M.B. (2000) Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenosis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 71: 405–411.

    PubMed  Google Scholar 

  31. Shah, N.P. (2000) Some beneficial effects of probiotic bacteria. Bioscience Microflora 19: 99–106.

    Google Scholar 

  32. Fuller, R. (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378.

    PubMed  CAS  Google Scholar 

  33. Hollister, A.G.; Corrier, D.E.; Nisbet, D.J. and DeLoach, J.R. (1994) Effect of cecal cultures encapsulated in alginate beads or lyophilized in skim milk and dietary lactose on Salmonella colonization in broiler chicks. Poultry Sci. (USA) 73(1): 99–105.

    CAS  Google Scholar 

  34. Cahill, S.M.; Uption, M.E. and McLoughlin, A.J. (2001) Bioencapsulation technology in meat preservation. In: Durieux, A. and Simon, J.-P. (Eds.) Focus on Biotechnology, Vol. 2: Applied Microbiology. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp 239–266.

    Google Scholar 

  35. Lee, D.H.; Jin, B.H.; Hwang, Y.I. and Seung-Cheol-Lee, S.C. (2000) Encapsulation of bromelain in liposome. Journal of Food Science and Nutrition 5: 81–85.

    Google Scholar 

  36. Stier, R. (1997) Case study: Slim Jim beef jerky. Food Process. 58(3): 56.

    Google Scholar 

  37. Pszczola, D.E. (1997) Encapsulated salt. Food Technol. 51:80.

    Google Scholar 

  38. Degnan, A.J. and Luchansky, J.B. (1992) Influence of beef tallow and muscle on the antilisterial activity of pediocin AcH and liposome-encapsulated pediocin AcH. J. Food Prot. 55: 552–554.

    CAS  Google Scholar 

  39. Degnan, A.J.; Buyong, N. and Luchansky, J.B. (1993) Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes. Int. J. Food Microbiol. 18: 127–138.

    Article  PubMed  CAS  Google Scholar 

  40. Fang, T.J. and Cyi-CL (1995) Inhibition of Listeria monocytogenes on pork tissue by immobilized nisin. J. Food Drug Anal. 3: 269–274.

    CAS  Google Scholar 

  41. Cutter, C.N. and Siragusa, G.R. (1996) Reduction of Brochothrix thermosphacta on beef surfaces following immobilization of nisin in calcium alginate gels. Lett. Appl. Microbiol. 23: 9–12.

    PubMed  CAS  Google Scholar 

  42. Cutter, C.N. and Siragusa, G.R. (1997) Growth of Brochothrix thermosphacta in ground beef following treatments with nisin in calcium alginate gels. Food Microbiol. 14: 425–430.

    Article  CAS  Google Scholar 

  43. Shahidi, F. and Pegg, R.B. (1991) Encapsulation of the pre-formed cooked cured-meat pigment. J. Food Sci. 56: 1500–1504.

    CAS  Google Scholar 

  44. O’Boyle, A.R.; Aladin-Kassam, N.; Rubin, L.J. and Diosady, L.L. (1992) Encapsulated cured-meat pigment and its application in nitrite-free ham. J. Food Sci. 57: 807–812.

    Google Scholar 

  45. McLoughlin, A. and Champagne, C.P. (1994) Immobilized cells in meat fermentations. CRC Crit. Rev. Biotechnol. 14(2): 179–192.

    CAS  Google Scholar 

  46. Anonymous (2000) Immobilize cells to facilitate meat fermentation. Emerging Food R&D Report 11: 7–8.

    Google Scholar 

  47. Gélinas, P. and Houde, A. (1998) Catalog of food microbial starters in North-America. Fondation des Gouverneurs CRDA, St-Hyacinthe, Canada, p. 119.

    Google Scholar 

  48. Ray, B. and Speck, M.L. (1973) Freeze injury in bacteria. Crit. Rev. Clin. Lab. Sci. 4: 161–166.

    Article  CAS  Google Scholar 

  49. Gehrke, H.H.; Pralle, K. and Deckwer, W.D. (1992) Freeze drying of microorganisms-influence of cooling rate on survival. Food Biotechnol. 6(1): 35–49.

    Article  Google Scholar 

  50. Coppola, R.; Iorrizzo, M.; Sorrentino, A.; Sorrentino, E. and Grazia, L. (1996) Survival after freezing of mesophilic lactobacilli isolated from fermented meat and sourdough. Industrie Alimentari 35(347): 349–351, 356.

    Google Scholar 

  51. Peter, G. and Reichart, O. (2001) The effect of growth phase, cryoprotectants and freezing rates on the survival of selected micro-organisms during freezing and thawing. Acta Aliment. 30(1) 89–97.

    Article  CAS  Google Scholar 

  52. Sheu, T.Y.; Marshall, R.T. and Heyman, H. (1993) Improving survival of culture bacteria in frozen desserts by microentrapment. J. Dairy Sci. 76: 1902–1907.

    Article  PubMed  CAS  Google Scholar 

  53. Necas, O. and Svoboda, A. (1985) Cell wall regeneration and protoplast reversion. In: Peberdy, J. F. and Ferenczy, L. (Eds.) Fungal Protoplasts. Marcel Dekker, Basel; p. 115.

    Google Scholar 

  54. Champagne, C.P.; Mondou, F.; Raymond, Y. and Brochu, E. (1996) Effect of immobilization in alginate on the stability of freeze-dried Bifidobacterium longum. Bioscience Microflora 15(1): 9–15.

    CAS  Google Scholar 

  55. Lemay, M.-J.; Champagne, C.P.; Gariépy, C. and Saucier, L. (In press) A comparison of the effect of meat formulation on the heat resistance of free or encapsulated culture of Lactobacillus sakei. J. Food Sci.

    Google Scholar 

  56. Kearney, L.; Upton, M. and McLoughlin, A. (1990) Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants. Appl. Environ. Microbiol. 56: 3112–3116.

    PubMed  CAS  Google Scholar 

  57. Siuta-Cruce, P. and Goulet, J. (2001) Improving probiotic survival rates. Food Technol. 55: 36–42.

    CAS  Google Scholar 

  58. Ensor, S.A.; Sofos, J.N. and Schmidt, G.R. (1990) Optimization of algin/calcium binder in restructured beef. Journal of Muscle Foods 1: 197–206.

    Google Scholar 

  59. Champagne, C.P.; Blahuta, N.; Brion, F. and Gagnon, C. (2000) A vortex-bowl disk atomizer system for the production of alginate beads in a 1500 L fermenter. Biotechnol. Bioeng. 68: 681–688.

    Article  PubMed  CAS  Google Scholar 

  60. Pruesse, U.; Fox, B.; Kirchhoff, M.; Bruske, F.; Breford, J. and Vorlop, K. D. Biotechnol. Tech. (1998) The Jet Cutting Method as a new immobilization technique. 12: 105–108.

    Google Scholar 

  61. Champagne, C.P.; Girard, F. and Rodrigue, N. (1993) Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium alginate beads. Int. Dairy J. 3(3): 257–275.

    Article  CAS  Google Scholar 

  62. Linders L.J.M.; Meerdink G. and Riet K. van’t. 1996 Influence of temperature and drying rate on the dehydration inactivation of Lactobacillus plantarum. Food and Bioproducts Bioprocessing 74 110–114.

    Google Scholar 

  63. Lievense L.C.; Verbeek M.A.M.; Meerdink G. and Riet K. van’t. 1990 Inactivation of Lactobacillus plantarum during drying. II. Measurement and modelling of the thermal inactivation. Bioseparation 1161–170.

    CAS  Google Scholar 

  64. Shah, N.P.; Lankaputhra, W.E.V.; Britz, M.L. and Kyle, W.S.A. (1995) Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int. Dairy J. 5: 515–521.

    Article  Google Scholar 

  65. Hartke, A.; Bouché, S.; Giard, J.-C.; Benachour, A.; Boutibonnes, P. and Auffray, Y. (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr. Microbiol. 33: 194–199.

    Article  PubMed  CAS  Google Scholar 

  66. Sameshima, T.; Magome, C.; Takeshita, K.; Arihara, K.; Itoh, M. and Kondo, Y. (1998) Effect of intestinal Lactobacillus starter cultures on the behaviour of Staphylococcus aureus in fermented sausages. Int. J. Food Microbiol. 41: 1–7.

    Article  PubMed  CAS  Google Scholar 

  67. Dabin, E. and Jussiaux, R. (1994) Le saucisson sec. Erti, Paris, France.

    Google Scholar 

  68. Nes, I.F. and Sorheim, O. (1984) Effect of infection of a bacteriophage in a starter culture during the production of salami dry sausage: a model study. J. Food Sci. 49: 337–340.

    Google Scholar 

  69. Trevors, K.E.; Holley, R.A. and Kempton, A. G. (1984) Effect of bacteriophage on the activity of lactic starter cultures used in the production of fermented sausages. J. Food Sci. 49: 650–651, 653.

    Google Scholar 

  70. Trevors, K.E.; Holley, R.A. and Kempton, A.G. (1983) Isolation and characterization of a lactobacillus plantarum bacteriophage isolated from a meat starter culture. J. Appl. Bacteriol. 54: 281–288.

    Google Scholar 

  71. Goetz, F.; Popp, F. and Schliefer, K.H. (1984) Isolation and characterization of a virulent bacteriophage from Staphylococcus carnosus. FEMS (Fed. Eur.Microbiol. Soc.) Microbiol. Lett. 23: 303–307.

    Google Scholar 

  72. Bashan, Y. (1986) Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 51: 1089–1098.

    PubMed  CAS  Google Scholar 

  73. Townsend, W.E. and Olson, D.G. (1987) Cured meats and cured meat products processing. In: Price, J.F. and Schweigert, B.S. (Eds.) The science of meat and meat products, 3rd edition. Food & Nutrition Press, inc. Westport, CT, USA; pp. 431–456.

    Google Scholar 

  74. Kearney, L.; Upton, M. and McLoughlin, A. (1990) Meat fermentation with immobilized lactic acid bacteria. Appl. Microbiol. Biotechnol. 33: 648–651.

    Article  CAS  Google Scholar 

  75. Siragusa, G.R. and Dickson, J.S. (1992) Inhibition of Listeria monocytogenes on beef tissue by application of organic acids immobilized in calcium alginate gel. J. Food Sci. 57: 293–296.

    CAS  Google Scholar 

  76. Siragusa, G.R. and Dickson, J.S. (1993) Inhibition of Listeria monocytogenes, Salmonella thyphimurium and Escherichia coli O157:H7 on beef muscle tissue by lactic or acetic acid contained in alginate gels. J. Food Saf. 13:147–158.

    CAS  Google Scholar 

  77. Bloukas, J.G.; Paneras, E.D. and Fournitzis, G.C. (1997) Sodium lactate and protective culture effects on quality characteristics and shelf-life of low-fat frankfurters produced with olive oil. Meat Sci. 45: 223–238.

    Article  CAS  Google Scholar 

  78. Lemay, M.-J.; Choquette, J.; Delaquis, P.J.; Gariépy, C.; Rodrigue, N. and Saucier, L. (2002) Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. Int. J. Food Microbiol. 78: 217–226.

    Article  PubMed  CAS  Google Scholar 

  79. Fox, K. and Eder, B.D. (1969) Comparison of survivor curves of Bacillus subtilis spores subjected to wet and dry heat. J. Food Sci. 34: 518–520.

    Google Scholar 

  80. Archer, J.; Jervis, E.T.; Bird, J. and Gaze, J. E. (1998) Heat resistance of Salmonella weltevreden in low moisture environment. J. Food Prot. 61: 969–973.

    PubMed  CAS  Google Scholar 

  81. Jay, M.J. (2000) High temperature food preservation and characteristics of thermophilic microorganisms. In: Jay, M.J. (Ed) Modern food microbiology. 6th ed., Gaithersburg: Aspen publishers Inc.; pp 341–362.

    Google Scholar 

  82. Sinha, R.N.; Shukla, A.K.; Madan, L.A.L. and Rangaanathan, B. (1982) Rehydratation of freeze-dried cultures of lactic streptococci. J. Food Sci. 47: 668–679.

    Google Scholar 

  83. de Valdéz, G.F.; Giori, G.S.; Ruiz Holgado, A.P. and Oliver, G. (1985) Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria. Appl. Environ. Microbiol. 50: 1339–1341.

    PubMed  Google Scholar 

  84. Lamprech, E.D. and Foster, E.M. (1963) The survival of starters organisms in concentrated suspensions. J. Appl. Bacteriol. 26: 359–369.

    Google Scholar 

  85. Stumbo, C.R. (1973) Thermal resistance of bacteria. In: Stumbo, C.R. (Ed.) Thermobacteriology in food processing. 2nd ed. Academic press, London; pp 93–120.

    Google Scholar 

  86. Senhaji, A.F and Loncin, M. (1977) The protective effect of fat on heat resistance of bacteria (I). J. Food Technol. 12: 203–216.

    Article  Google Scholar 

  87. Gaze, J.E. (1985) The effect of oil on the heat resistance of Staphylococcus aureus. Food Microbiol. 2: 277–283.

    Article  Google Scholar 

  88. Ahmed, N.M.; Conner, D.E. and Huffman, D.L. (1995) Heat resistance of Escherichia coli O157: H7 in meat and poultry as affected by product composition. J. Food Sci. 60: 606–610.

    CAS  Google Scholar 

  89. Gonzalez, I.; Lopez, M.; Mazas, M.; Gonzalez, J. and Bernardo, A. (1997) Thermal resistance of Bacillus cereus spores as affected by additives in the recovery medium. J. Food Saf. 17: 1–12.

    CAS  Google Scholar 

  90. Annous, B.A. and Kozempel, M.F. (1998) Influence of growth medium on thermal resistance of Pediococcus sp. NRRL B-2354 (Formerly Micrococcus freudenreichii) in liquid foods. J. Food Prot. 61: 578–581.

    PubMed  CAS  Google Scholar 

  91. de Valdéz, G.F.; Giori, G.S.; Pesce, A.; Ruiz Holgado, A.P. and Oliver, G. (1983) Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying. Cryobiology 20: 560–566.

    Article  Google Scholar 

  92. de Valdéz, G.F.; Giori, G.S.; Ruiz Holgado, A.P. and Oliver, G. (1983) Protective effect of adonitol on lactic acid bacteria subjected to freeze-drying. Appl. Environ. Microbiol. 45: 302–304.

    PubMed  Google Scholar 

  93. de Valdéz, G.F.; Giori, G.S.; Ruiz Holgado, A.P. and Oliver, G. (1985) Effect of drying medium on residual moisture content and viability of freeze-dried lactic acid bacteria. Appl. Environ. Microbiol. 49: 413–415.

    PubMed  Google Scholar 

  94. Leslie, S.B.; Israeli, E.; Lighthart, B.; Crowe, J.H. and Crowe, L.M. (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61: 3592–3597.

    PubMed  CAS  Google Scholar 

  95. Venugopal, V. (1994) Production of fish protein hydrolyzates by microorganisms. In: Fisheries processing: biotechnological applications. Chapman and Hall, London, UK; pp. 223–243.

    Google Scholar 

  96. Younes, G.; Nicaud, J.-M. and Guespin-Michel, J. (1984) Enhancement of extracellular enzymatic activities produced by immobilized growing cells of Myxococcus xanthus. Appl. Microbiol. Biotechnol. 19: 67–69.

    Article  CAS  Google Scholar 

  97. Venugopal, V.; Alur, M.D. and Nerkar, D.P. (1989) Solubilization of fish proteins using immobilized microbial cells. Biotechnol. Bioeng. 33: 1098–1103.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Saucier, L., Champagne, C.P. (2005). Immobilised-Cell Technology and Meat Processing. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_20

Download citation

Publish with us

Policies and ethics