Skip to main content

Immobilised Cell Technologies for the Dairy Industry

  • Chapter
Book cover Applications of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanton, C.; Gardiner, G.; Meehan, H.; Collins, K.; Fitzgerald, G.; Lynch, P.B. and Ross, R.P. (2001) Market potential for probiotics. Am. J. Clin. Nutr. 73: 476S–483S.

    PubMed  CAS  Google Scholar 

  2. Champagne, C.P.; Lacroix, C. and Sodini-Gallot, I. (1994) Immobilized cell technologies for the dairy industry. CRC Crit. Rev. Biotechnol. 14: 109–134.

    CAS  Google Scholar 

  3. Artignan, J.M.; Corrieu, G. and Lacroix, C. (1997) Rheology of pure and mixed kappa-carrageenan gels in lactic-acid fermentation conditions. J. Texture Stud. 28: 47–70.

    Google Scholar 

  4. Sodini, I.; Boquien, C.Y.; Corrieu, G. and Lacroix, C. (1997) Microbial dynamics of co-and separately entrapped mixed cultures of mesophilic lactic acid bacteria during the continuous prefermentation of milk. Enzyme Microb. Technol. 20: 381–388.

    Article  PubMed  CAS  Google Scholar 

  5. Lamboley, L.; Lacroix, C.; Artignan, J.M.; Champagne, C.P. and Vuillemard, J.C. (1999) Long-term mechanical and biological stability of an immobilized cell reactor for continuous mixed-strain mesophilic lactic starter production in whey permeate. Biotechnol. Prog. 15: 646–654.

    Article  PubMed  CAS  Google Scholar 

  6. Lamboley, L.; Lacroix, C. and Champagne, J.C. (2001) Effect of inoculum composition and low KCl supplementation on the biological and rheological stability of an immobilized-cell system for mixed mesophilic lactic starter production. Biotechnol. Prog. 17: 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  7. Dunne, W.M., Jr. (2002) Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 15: 155–166.

    Article  PubMed  CAS  Google Scholar 

  8. Bergmaier, D.; Lacroix, C. and Champagne, C.P. (2002) Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol., 95: 1049–1057.

    Article  CAS  Google Scholar 

  9. Kulozik, U. and Wilde, J. (1999) Rapid lactic acid production at high cell concentrations in whey ultrafiltrate by Lactobacillus helveticus. Enzyme Microb. Technol. 24: 297–302.

    Article  CAS  Google Scholar 

  10. Tejayadi, S. and Cheryan, M. (1995) Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Appl. Microbiol. Biotechnol. 43: 242–248.

    Article  CAS  Google Scholar 

  11. Gonçalves, L.M.D.; Barreto, M.T.O.; Xavier, A.M.B.R.; Carrondo, M.J.T. and Klein, J. (1992) Inert supports for lactic acid fermentation-a technological assessment. Appl. Microbiol. Biotechnol. 38: 305–311.

    Article  Google Scholar 

  12. Poncelet, D. and Neufeld, R.J. (1996) Fundamentals of dispersion in encapsulation technology. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized cells: Basics and applications. Elsevier Science, Amsterdam, The Netherlands; pp. 47–54.

    Google Scholar 

  13. Champagne, C.P.; Raymond, Y.; Mondou, F. and Julien, J.P. (1995) Studies on the encapsulation of Bifidobacterium longum cultures by spray-coating or cocrystallization. Bif. Microflora. 14: 7–14.

    Google Scholar 

  14. Sunohara, H.; Ohno, T.; Shibata, N. and Seki, K., inventors; Morishita Jintan Co. Ltd, assignee (1995) Dec. 26. Process for producing capsule and capsule obtained thereby. U.S. patent 5,478,570.

    Google Scholar 

  15. Picot, A. and Lacroix, C. (2003) Effect of dynamic loop mixer operating conditions on o/w emulsion used for cell encapsulation. Lait. 83: 237–250.

    Article  CAS  Google Scholar 

  16. Picot, A. and Lacroix, C. (2003) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Intern. Dairy J. (in press).

    Google Scholar 

  17. Arnaud, J.-P.; Lacroix, C. and Castaigne, F. (1992) Counterdiffusion of lactose and lactic acid in κ-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme Microb. Technol. 14: 715–724.

    Article  PubMed  CAS  Google Scholar 

  18. Masson, F.; Lacroix, C. and Paquin, C. (1994) Direct measurement of pH profiles in gel beads immobilizing Lactobacillus helveticus using a pH sensitive microelectrode. Biotechnol. Tech. 8: 551–556.

    Article  CAS  Google Scholar 

  19. Cachon, R.; Antérieux, P. and Diviès, C. (1998) The comparative behaviour of Lactococcus lactis in free and immobilized culture processes. J. Biotechnol. 63: 211–218.

    Article  CAS  Google Scholar 

  20. Monbouquette, H.G.; Sayles, G.D. and Ollis, D.F. (1990) Immobilized cell biocatalyst activation and pseudo-steady state behavior: Model and experiment. Biotechnol. Bioeng. 35: 609–629.

    Article  CAS  PubMed  Google Scholar 

  21. Wijffels, R.H.; De Gooijer, C.D.; Kortekass, S. and Tamper, J.H. (1991) Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: Part 2. Model evaluation. Biotechnol. Bioeng. 38: 544–550.

    Article  Google Scholar 

  22. Yabannavar, V.M. and Wang, D.I.C. (1991) Analysis of mass transfert for immobilized cells in an extractive lactic acid fermentation. Biotechnol. Bioeng. 37: 544–550.

    Article  CAS  PubMed  Google Scholar 

  23. Schepers, A.W. (2003) Modelling of growth and lactic acid production of Lactobacillus helveticus during continuous free and immobilized cell cultures. Ph.D. Dissertation, 20428, Université Laval, Quebec, Canada.

    Google Scholar 

  24. Arnaud, J.P. and Lacroix, C. (1991) Diffusion of lactose in κ-carrageenan / locust bean gum gel beads with or without entrapped growing bacteria. Biotechnol. Bioeng. 38: 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  25. Prioult, G.; Lacroix, C.; Turcotte, C. and Fliss, I. (2000) Simultaneous immunofluorescent detection of coentrapped cells in gel beads. Appl. Environ. Microbiol. 66: 2216–2219.

    Article  PubMed  CAS  Google Scholar 

  26. Doleyres, Y.; Fliss, I. and Lacroix, C. (2003) Continuous production of lactic starters containing probiotics using immobilized cell technology. Biotechnol. Prog. (in press).

    Google Scholar 

  27. Doleyres, Y.; Fliss, I. and Lacroix, C. (2002) Quantitative determination of the spatial distribution of pure and mixed strain immobilized cells in gel beads by immunofluorescence. Appl. Microbiol. Biotechnol. 59: 297–302.

    Article  PubMed  CAS  Google Scholar 

  28. Audet, P.; Lacroix, C. and Paquin, C. (1991) Continuous fermentation of a whey supplemented whey permeate medium with immobilized Streptococcus salivarius subsp. thermophilus. Int. Dairy J. 1: 1–15.

    Article  Google Scholar 

  29. Arnaud, J.P.; Lacroix, C. and Choplin, L. (1992) Effect of agitation rate on cell release rate and metabolism during continuous fermentation with entrapped growing Lactobacillus casei subsp. casei. Biotechnol. Techn. 6: 265–270.

    CAS  Google Scholar 

  30. Prévost, H. and Diviès, C. (1987) Fresh fermented cheese production with continuous prefermented milk by a mixed culture of mesophilic lactic streptococci entrapped in Ca-alginate. Biotechnol. Lett. 9: 789–791.

    Article  Google Scholar 

  31. Prévost, H. and Diviès, C. (1988) Continuous prefermentationof milk by entrapped yogurt bacteria. I. Development of the process. Milchwissenschaft 43: 621–625.

    Google Scholar 

  32. Prévost, H. and Diviès, C. (1988) Continuous prefermentation of milk by entrapped yogurt bacteria. II. Data for optimization of the process. Milchwissenschaft 43: 716–719.

    Google Scholar 

  33. Sodini-Gallot, I.; Corrieu, G.; Boquien, C.Y.; Latrille, E. and Lacroix, C. (1995) Process performance of continuous inoculation and acidification of milk with immobilized lactic acid bacteria. J. Dairy Sci. 78: 1407–1420.

    CAS  Google Scholar 

  34. Lamboley, L.; Lacroix, C. and Champagne, J.C. (1997) Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Biotech. Bioeng. 56: 502–516.

    Article  CAS  Google Scholar 

  35. Doleyres, Y.; Paquin, C.; LeRoy, M. and Lacroix, C. (2002) Bifidobacterium longum ATCC 15707 cell production during free-and immobilized-cell cultures in MRS-whey permeate medium. Appl. Microbiol. Biotechnol. 60: 168–173.

    Article  PubMed  CAS  Google Scholar 

  36. Arnaud, J.P.; Lacroix, C.; Foussereau, C. and Chopin, L. (1993) Shear stress effects on growth and activity of Lactobacillus delbrueckii subsp. bulgaricus. J. Biotechnol. 29: 157–175.

    Article  PubMed  CAS  Google Scholar 

  37. Champagne, C.P.; Girard, F. and Rodriguez, N. (1993) Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium-alginate beads. Int. Dairy J. 3: 257–275.

    Article  CAS  Google Scholar 

  38. Norton, S.; Lacroix, C. and Vuillemard, J.C. (1994) Reduction of yeast extract supplementation in lactic acid fermentation of whey permeate by immobilized cell technology. J. Dairy Sci. 77: 2494–2508.

    CAS  Google Scholar 

  39. Gobbetti, M. and Rossi, J. (1993) Continuous fermentation with free-growing and immobilized multistaters to get a kefir production pattern. Microbiologie-Aliments-Nutrition 11: 119–127.

    CAS  Google Scholar 

  40. Cachon, R. (1993) Etude du comportement cinétique d’une bactérie lactique modèle en culture libre ou immobilisée dans des billes de gel. Thèse de doctorat, Université de Bourgogne, Dijon, France.

    Google Scholar 

  41. Lacroix, C.; Sodini, I. and Corrieu, G. (1996) Microbiological stability of an immobilized cell bioreactor with mixed lactic acid bacteria during continuous fermentation of milk. In: Wijffels, R.H.; Buitelar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized cells: Basics and applications. Elsevier Science, Amsterdam, The Netherlands; pp. 600–607.

    Google Scholar 

  42. Krishnan, S.; Gowda, M.C.; Misra, M.C. and Karanth, N.G. (2001) Physiological and morphological changes in immobilized L. plantarum NCIM 2084 cells during repeated bacth fermentation for production of lactic acid. Food Biotechnol. 15: 193–202.

    Article  CAS  Google Scholar 

  43. Krisch, J. and Szajani, B. (1997) Ethanol and acetic tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti. Biotechnol. Lett. 19: 525–528.

    Article  CAS  Google Scholar 

  44. Curtain, C. (1986) Understanding and avoiding ethanol inhibition. Trends in Biotechnol. 4: 110.

    Article  CAS  Google Scholar 

  45. Holcberg, I. and Margalith, P. (1981) Alcoholic fermentation by immobilized yeast at high sugar concentration. Eur. J. Appl. Microbiol. Biotechnol. 13: 133–140.

    Article  CAS  Google Scholar 

  46. Diefenbach, R.; Keweloh, H. and Rehm, H.J. (1992) Fatty acid impurities in alginate influence the phenol tolerance of immobilized Escherichia coli. Appl. Microbiol. Biotechnol. 36: 530–534.

    Article  PubMed  CAS  Google Scholar 

  47. Heipieper, H.J.; Keweloh, H. and Rehm, H.J. (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl. Environ. Microbiol. 57: 1213–1217.

    PubMed  CAS  Google Scholar 

  48. Keweloh, H.; Heipieper, H.J. and Rehm, H.J. (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl. Microbiol. Biotechnol. 31: 383–389.

    Article  CAS  Google Scholar 

  49. Jouenne, T.; Tresse, O. and Junter, G.A. (1994) Agar-entrapped bacteria as an in vitro model of biofilms and their susceptibility to antibiotics. FEMS Microbiol. Lett. 119: 237–242.

    PubMed  CAS  Google Scholar 

  50. Doleyres, Y.; Fliss, I. and Lacroix, C. (2003) Changes of lactic and probiotic culture characteristics during continuous immobilized-cell fermentation with mixed strains. submitted.

    Google Scholar 

  51. Trauth, E.; Lemaitre, J.P.; Rojas, C.; Diviès, C. and Cachon, R. (2001) Resistance of immobilized lactic acid bacteria to the inhibitory effect of quaternary ammonium sanitizers. Lebensm.-Wiss. U.-Technol. 34: 239–243.

    Article  CAS  Google Scholar 

  52. Reilly, S.S. and Gilliland, S.E. (1999) Bifidobacterium longum survival during frozen and refrigerated storage as related to pH during growth. J. Food Sci. 64: 714–718.

    CAS  Google Scholar 

  53. Desmond, C.; Stanton, C.; Fitzgerald, G.F.; Collins, K. and Ross, R.P. (2002) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J. 12: 183–190.

    Article  CAS  Google Scholar 

  54. Shapiro, J.A. and Dworkin, M. (Eds.) (1997) Bacteria as multicellular organism. Oxford Univ. Press, New York.

    Google Scholar 

  55. Bergmaier, D. (2002) Production d’exopolysaccharides par fermentation avec des cellules immobilisées de Lb. rhamnosus RW-9595M d’un milieu à base de perméat de lactosérum. Ph.D. Dissertation, 20383, Université Laval, Quebec, PQ, Canada.

    Google Scholar 

  56. Dieckelmann, M.; Johnson, L.A. and Beacham, I.R. (1998) The diversity of lipases from psychrotrophic strains of Pseudomonas: a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J. Appl. Microbiol. 85: 527–536.

    Article  PubMed  CAS  Google Scholar 

  57. Barrett, N.E.; Grandison, A.S. and Lewis, M.J. (1999) Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk. J. Dairy Res. 66: 73–80.

    Article  PubMed  CAS  Google Scholar 

  58. Lapointe, M.; Champagne, C.P.; Vuillemard, J.C. and Lacroix, C. (1996) Effect of dilution rate on bacteriophage development in an immobilized cell system used for continuous inoculation of Lactococci in milk. J. Dairy Sci. 79: 767–774.

    Article  CAS  Google Scholar 

  59. Champagne, C.P.; Girard, F. and Morin, N. (1988) Bacteriophage development in an immobilized lactic acid bacteria system. Biotechnol. Lett. 10: 463–468.

    Article  Google Scholar 

  60. Steenson, L.R.; Klaenhammer, T.R. and Swaisgood, H.E. (1987) Calcium alginate-immobilized cultures of lactic Streptococci are protected from bacteriophages. J. Dairy Sci. 70: 1121–1127.

    PubMed  CAS  Google Scholar 

  61. Passos, F.M.L.; Klaenhammer, T.R. and Swaisgood, H.E. (1994) Response to phage infection of immobilized lactococci during continuous acidification of skim milk. J. Dairy Res. 61: 537–544.

    Article  CAS  Google Scholar 

  62. Macedo, M.G.; Champagne, C.P.; Vuillemard, J.C. and Lacroix, C. (1999) Establishment of bacteriophages in an immobilized cells system used for continuous inoculation of Lactococci. Int. Dairy J. 9: 437–445.

    Article  Google Scholar 

  63. Fitzgerald, G.F. and Hill, C. (1996) Genetics of starter cultures. In: Cogan, T.M. and Accolas, J.P. (Eds.) Dairy starter cultures. VCH Publishers, New-York, NY; pp. 25–46.

    Google Scholar 

  64. De Vuyst, L. and Degeest, B. (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177.

    Article  PubMed  Google Scholar 

  65. Teuber, M.; Meile, L. and Schwarz, F. (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 76: 115–137.

    Article  PubMed  CAS  Google Scholar 

  66. Barbotin, J.N. (1994) Immobilization of recombinant bacteria. A strategy to improve plasmid stability. Ann. N.Y. Acad. Sci. 721: 303–309.

    PubMed  CAS  Google Scholar 

  67. D’Angio, C.; Beal, C.; Boquien, C.Y. and Corrieu, G. (1994) Influence of dilution rate and cell immobilization on plasmid stability during continuous cultures of recombinant strains of Lactococcus lactis subsp. lactis. J. Biotechnol. 34: 87–95.

    Google Scholar 

  68. Huang, J.; Lacroix, C.; Daba, H. and Simard, R.E. (1996) Pediocin 5 production and plasmid stability during continuous free and immobilized cell cultures of Pediococcus acidilactici UL5. J. Appl. Bacteriol. 80: 635–644.

    PubMed  CAS  Google Scholar 

  69. Kumar, P.K. and Schugerl, K. (1990) Immobilization of genetically engineered cells: a new strategy for higher stability. J. Biotechnol. 14: 255–272.

    Article  PubMed  CAS  Google Scholar 

  70. Nasri, M.; Sayadi, S.; Barbotin, J.N.; Dhulster, P. and Thomas, D. (1987) Influence of immobilization on the stability of pTG201 recombinant plasmid in some strains of Escherichia coli. Appl. Environ. Microbiol. 53: 740–744.

    PubMed  CAS  Google Scholar 

  71. Nasri, M.; Sayadi, S.; Barbotin, J.N. and Thomas, D. (1987) The use of the immobilization of whole living cells to increase stability of recombinant plasmid in Escherichia coli. J. Biotechnol. 6: 147–157.

    Article  CAS  Google Scholar 

  72. Dincbas, V.; Hortacsu, A. and Camurdan, A. (1993) Plasmid stability in immobilized mixed cultures of recombinant Escherichia coli. Biotechnol. Prog. 9: 218–220.

    Article  PubMed  CAS  Google Scholar 

  73. Klinkenberg, G.; Lystad, K.Q.; Levine, D.W. and Dyrset, N. (2001) Cell release from alginate immobilized Lactococcus lactis ssp. lactis in chitosan and alginate coated beads. J. Dairy Sci. 84: 1118–1127.

    PubMed  CAS  Google Scholar 

  74. Gilliland, S. E. (1985) Concentrated starter cultures. In: Gilliland, S.E. (Ed.) Bacterial starter cultures for food. CRC Press Inc.: Boca Raton, FL; pp. 145–157.

    Google Scholar 

  75. Sodini, I.; Boquien, C.Y.; Corrieu, G. and Lacroix, C. (1997) Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing. J. Ind. Microbiol. Biotechnol. 18: 56–61.

    Article  PubMed  CAS  Google Scholar 

  76. Audet, P.; St-Gelais, D. and Roy, D. (1995) Production of mixed cultures of non-isogenic Lactococcus lactis ssp. cremoris using immobilized cells. Milchwissenschaft 50: 18–22.

    CAS  Google Scholar 

  77. Ibrahim, S.A. and Bezkorovainy, A. (1994) Growth-promoting factors for Bifidobacterium longum. J. Food Sci. 59: 189–191.

    CAS  Google Scholar 

  78. Ouellette, V.; Chevalier, P. and Lacroix, C. (1994) Continuous fermentation of a supplemented milk with immobilized Bifidobacterium infantis. Biotechnol. Tech. 8: 45–50.

    Article  CAS  Google Scholar 

  79. Corre, C.; Madec, M.N. and Boyaval, P. (1992) Production of concentrated Bifidobacterium bifidum. J. Chem. Technol. Biotechnol. 53: 189–194.

    Article  CAS  Google Scholar 

  80. Passos, F.M.L. and Swaisgood, H.E. (1993) Development of a spiral mesh bioreactor with immobilized Lactococci for continuous inoculation and acidification of milk. J. Dairy Sci. 76: 2856–2867.

    Article  CAS  Google Scholar 

  81. Sodini, I.; Lagace, L.; Lacroix, C. and Corrieu, G. (1998) Effect of continuous prefermentation of milk with an immobilized cell bioreactor on fermentation kinetics and curd properties. J. Dairy Sci. 81: 631–638.

    CAS  Google Scholar 

  82. Vickroy, T.B. (1985) Lactic acid. In: Moo-Young M. (Ed.) Comprehensive Biotechnology, vol. 3. Pergamon Press, Oxford, UK; pp. 761–776.

    Google Scholar 

  83. Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H. and Frank, J.R. (1995) Technological and economic potential of poly(lactic) acid and lactic acid derivatives. FEMS Microbiol. Rev. 16: 221–231.

    CAS  Google Scholar 

  84. Norton, S.; Lacroix, C. and Vuillemard, J.C. (1994) Kinetic study of a continuous fermentation of whey permeate by immobilized Lactobacillus helveticus. Enzyme Microb. Technol. 16: 457–466.

    Article  CAS  Google Scholar 

  85. Schepers, A.W.; Thibault, J. and Lacroix, C. (2002) Multiple factor kinectic analysis and modeling of Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I: Multiple factor kinetic analysis. Enzyme Microb. Technol. 30: 176–186.

    Article  Google Scholar 

  86. Mehaia, M.A. and Cheryan, M. (1986) Lactic acid from whey permeate in a membrane recycle bioreactor. Enzyme Microb. Technol. 8: 289–292.

    Article  CAS  Google Scholar 

  87. Ruas-Madiedo, P.; Hugenholtz, J. and Zoon, P. (2002) An overview of the functionnality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163–171.

    Article  CAS  Google Scholar 

  88. Bergmaier, D.; Lacroix, C. and Champagne, C.P. (2003) Exopolysaccharide production during chemostat cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol. submitted.

    Google Scholar 

  89. Jack, R.W.; Tagg, J.R. and Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59: 171–200.

    PubMed  CAS  Google Scholar 

  90. Wan, J.; Hickey, M.W. and Mawson, R.F. (1995) Continuous production of bacteriocins, brevicin, nisin and pediocin using calcium alginate immobilized bacteria. J. Appl. Bacteriol. 79: 671–676.

    CAS  Google Scholar 

  91. Sonomoto, K.; Chinachoti, N.; Endo, N. and Ishizaki, A. (2000) Biosynthetic production of nisin Z by immobilized Lactococcus lactis IO-1. J. Mol. Catal. B. Enzym. 10: 325–334.

    Article  CAS  Google Scholar 

  92. Desjardins, P.; Meghrous, J. and Lacroix, C. (2001) Effect of aeration and dilution rate on nisin Z production during continuous fermentation with free and immobilized Lactococcus lactis UL719 in supplemented whey permeate. Int. Dairy J. 11: 943–951.

    Article  CAS  Google Scholar 

  93. Goulhen, F.; Meghrous, J. and Lacroix, C. (1999) Production of a nisin/pediocin mixture by pH-controlled mixed-strain batch cultures in supplemented whey permeate. J. Appl. Microbiol. 86: 399–406.

    Article  CAS  Google Scholar 

  94. Bertrand, N.; Fliss, I. and Lacroix, C. (2001) High nisin-Z production during repeated-cycle batch cultures in supplemented whey permeate using immobilized Lactococcus lactis UL719. Int. Dairy J. 11: 953–960.

    Article  CAS  Google Scholar 

  95. Guarner, F. and Schaafsma, G.J. (1998) Probiotics. Int. J. Food Microbiol. 39: 237–238.

    Article  PubMed  CAS  Google Scholar 

  96. Adhikari, K.; Mustapha, A.; Grün, I.U. and Fernando, L. (2000) Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 83: 1946–1951.

    PubMed  CAS  Google Scholar 

  97. Schillinger, U. (1999) Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage. Int. J. Food Microbiol. 47: 79–87.

    Article  PubMed  CAS  Google Scholar 

  98. Dave, R.I. and Shah, N.P. (1997) Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int. Dairy J. 7: 31–41.

    Article  Google Scholar 

  99. Shah, N.P. and Ravula, R.R. (2000) Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust. J. Dairy Technol. 55: 139–144.

    Google Scholar 

  100. Sheu, T.Y.; Marshall, R.T. and Heymann, H. (1993) Improving survival of culture bacteria in frozen desserts by microentrapment. J. Dairy Sci. 76: 1902–1907.

    Article  PubMed  CAS  Google Scholar 

  101. Champagne, C.P.; Gaudy, C.; Poncelet, D. and Neufeld, R.J. (1992) Lactococcus lactis release from calcium alginate beads. Appl. Environ. Microbiol. 58: 1429–1434.

    PubMed  CAS  Google Scholar 

  102. Kearney, L.; Upton, M. and Mc Laughlin, A. (1990) Enhancing the viability of Lactobacillus plantarum inoculum by immobilizing the cells in calcium-alginate beads incorporating cryoprotectants. Appl. Environ. Microbiol. 56: 3112–3116.

    PubMed  CAS  Google Scholar 

  103. Maitrot, H.; Paquin, C.; Lacroix, C. and Champagne, C.P. (1997) Production of concentrated freezedried cultures of Bifidobacterium longum in κ-carrageenan-locust bean gum gel. Biotechnol. Techn. 11: 527–531.

    Article  CAS  Google Scholar 

  104. Modler, H.W. and Villa-Garcia, L. (1993) The growth of Bifidobacterium longum in a whey-based medium and viability of this organism in frozen yogurt with low and high levels of developed acidity. Cult. Dairy Prod. J. 28: 4–8.

    Google Scholar 

  105. Hussein, S.A. and Kebary, K.M.K. (1999) Improving viability of bifidobacteria by microentrapment and their effect on some pathogenic bacteria in stirred yogurt. Acta Aliment. 28: 113–131.

    Google Scholar 

  106. Sun, W. and Griffiths, M.W. (2000) Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17–25.

    Article  PubMed  CAS  Google Scholar 

  107. Dinakar, P. and Mistry, V.V. (1994) Growth and viability of Bifidobacterium longum in cheddar cheese. J. Dairy Sci. 77: 2854–2864.

    PubMed  CAS  Google Scholar 

  108. Lee, K.Y. and Heo, T.R. (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl. Environ. Microbiol. 66: 869–873.

    Article  PubMed  CAS  Google Scholar 

  109. Prévost, H. and Diviès, C. (1992) Cream fermentations by a mixed culture of Lactococci entrapped in two-layer calcium alginate gel beads. Biotechnol. Lett. 14: 583–588.

    Article  Google Scholar 

  110. Krischke, W.; Schröder, M. and Trösch, W. (1991) Continuous production of L-lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Appl. Microbiol. Biotechnol. 34: 573–578.

    Article  CAS  Google Scholar 

  111. Iwasaki, K.-I.; Nakajima, M. and Sasahara, H. (1992) Porous alumina beads for immobilization of lactic acid bacteria and its application for repeated-batch fermentation in soy sauce production. J. Ferment. Bioeng. 73: 375–379.

    Article  CAS  Google Scholar 

  112. Senthuran, A.; Senthuran, V.; Mattiasson, B. and Kaul, R. (1997) Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol. Bioeng. 55: 841–853.

    Article  CAS  PubMed  Google Scholar 

  113. Velazquez, A.C.; Pometto, A.L., 3rd; Ho, K.L. and Demirci, A. (2001) Evaluation of plastic-composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Appl. Microbiol. Biotechnol. 55: 434–441.

    Article  PubMed  CAS  Google Scholar 

  114. Ho, K.-L.G.; Anthony, L.; Pometto, I.; Hinz, P.N.; Dickson, J.S. and Demirci, A. (1997) Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl. Environ. Microbiol. 63: 2516–2523.

    PubMed  CAS  Google Scholar 

  115. Rao, A.V.; Shiwnarain, N. and Maharaj, I. (1989) Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can. Inst. Food Sci. Technol. J. 22: 345–349.

    Google Scholar 

  116. Wenrong, S. and Griffiths, M.W. (2000) Survival of bifidobacteria in yoghurt and stimulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17–25.

    Article  Google Scholar 

  117. Fàvaro Trindade, C.S. and Grosso, C.R.F. (2000) The effect of the immobilization of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastro-intestinal secretions. Milchwissenschaft 55: 496–499.

    Google Scholar 

  118. Tuli, A.; Khanna, P.K.; Marwaha, S.S. and Kennedy, J.F. (1985) Lactic acid production from whey permeate by immobilized Lactobacillus casei. Enzyme Microb. Technol. 7: 164–168.

    Article  CAS  Google Scholar 

  119. Roukas, T. and Kotzekidou, P. (1991) Production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells. Enzyme Microb. Technol. 13: 33–38.

    Article  CAS  Google Scholar 

  120. Boyaval, P. and Goulet, J. (1988) Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginate-entrapped Lactobacillus helveticus. Enzyme Microb. Technol. 10: 725–728.

    Article  CAS  Google Scholar 

  121. Roy, D.; Goulet, J. and LeDuy, A. (1987) Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J. Dairy Sci. 70: 506–513.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Lacroix, C., Grattepanche, F., Doleyres, Y., Bergmaier, D. (2005). Immobilised Cell Technologies for the Dairy Industry. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_18

Download citation

Publish with us

Policies and ethics