Skip to main content

Application of Immobilisation Technology to Cider Production: A Review

  • Chapter
Applications of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

Abstract

Transformation of apple juice into cider is a complex process requiring activity of yeast and lactic acid bacteria to accomplish respectively alcoholic and malolactic fermentations. Despite the traditional aspect of cider, cidermaking industry researches improvement of the process to control the two fermentations and the production of flavouring components. During the two last decades interest was given to the application of the cell immobilisation technology to cider production. In this article, the advanced researches for yeast and Oenococcus oeni immobilisation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jarvis, B.; Forster, M.J. and Kinsella, W.P. (1995) Factors affecting the development of cider flavour. J. Appl. Bacteriol. Symp. Suppl. 79: 5S–18S.

    Google Scholar 

  2. Laplace, J.M.; Apery, S.; Frère, J. and Auffray, Y. (1998) Incidence of indigenous microbial flora from utensils and surrounding air in traditional french cider making. J. Inst. Brew. 104: 71–74.

    Google Scholar 

  3. Duenas, M.; Irastorza, A.; Fernandez, K.; Bilbao, A. and Huerta, A. (1994) Microbial populations and malolactic fermentation of apple cider using traditional and modified methods. J. Food Science 59: 1060–1064.

    CAS  Google Scholar 

  4. Le Quère, J.M. and Drilleau, J.F. (1993) Microorganismes et typicité du cidre. Pomme 31: 16–19.

    Google Scholar 

  5. Salih, A.G.; Le Quéré, J.M. and Drilleau, J.F. (1990) Lactic acid bacteria and malolactic fermentation in the manufacture of Spanish cider. J. Inst. Brew. 96: 369–372.

    CAS  Google Scholar 

  6. Drilleau, J.F. (1979) L’utilisation des fruits à cidre et leurs transformations industrielles. Bios. 10: 22–25.

    Google Scholar 

  7. Duenas, M.; Irastorza, A.; Fernandez, C.; Bilbao, A. and Del Campo, G. (1997) Influence of apple juice treatments on the cider making process. J. Inst. Brew. 103: 251–255.

    CAS  Google Scholar 

  8. Herrero, M.; Cuesta, I.; Garcia, L.A. and Diaz, M. (1999) Changes in organic acids during malolactic fermentation at different temperatures in yeast-fermented apple juice. J. Inst. Brew. 105: 191–195.

    CAS  Google Scholar 

  9. Herrero, M.; Cuesta, I.; Garcia, L.A. and Diaz, M. (1999) Organic acids in cider with simultaneous inoculation of yeast and malolactic bacteria: effect of fermentation temperature. J. Inst. Brew. 105: 229–232.

    CAS  Google Scholar 

  10. Kosseva, M.R. (1999) Alternative biocatalysts for the malolactic fermentation: immobilised and/or lyophilised culture. Bulgarian Chemical Communications 31: 536–546.

    CAS  Google Scholar 

  11. Cabranes, C.; Mangas, J.J. and Blanco, D. (1996) Controlled production of cider by induction of alcoholic fermentation and malolactic conversion. J. Inst. Brew. 102: 103–109.

    CAS  Google Scholar 

  12. Lonvaud-Funel, A. (2001) Starters for wine industry. In: Durieux, A. and Simon, J.-P. (Eds.) Applied Microbiology. Kluwer Academic Publishers; pp. 31–47.

    Google Scholar 

  13. Leguerinel., I; Cleret, J.J.; Bourgeois, C. and Mafart, P. (1988) Yeast strain and the formation of flavour components in cider. J. Inst. Brew. 96: 391–395.

    Google Scholar 

  14. Leguerinel, I.; Mafart, P.; Cleret, J.J. and Bourgeois, C. (1989) Yeast strain and kinetic aspects of the formation of flavour components in cider. J. Inst. Brew. 95: 405–409.

    CAS  Google Scholar 

  15. Hammond, J. (1986) The contribution of yeast to beer flavour. Brew. Guardian 115: 27–33.

    Google Scholar 

  16. Peddie, H.A.B. (1990) Ester formation in brewery fermentation. J. Inst. Brew. 96: 327–331.

    CAS  Google Scholar 

  17. Dicks, L.M.T.; Dellagio, F. and Collins, M.D. (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni (corrig.) gen. nov., comb. nov. Int. J. Syst. Bacteriol. 4: 395–397.

    Article  Google Scholar 

  18. Davis, C.R.; Wibowo, D.; Eschenbruch, R.E.; Lee, T.H. and Fleet, G.H. (1985) Practical implications of malolactic fermentation: a review. Am. J. Enol. Vitic. 36: 290–301.

    CAS  Google Scholar 

  19. Lonvaud-Funel, A. and Strasser de Saad, A.M. (1982) Purification and properties of a malolactic enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Appl. Environ. Microbiol. 43: 357–361.

    PubMed  CAS  Google Scholar 

  20. Spettoli, P.; Nuti, M.P. and Zamaroni, A. (1984) Properties of malolactic activity purified from Leuconostoc oenos ML34 by affinity chromatography. Appl. Environ. Microbiol. 48: 900–901.

    PubMed  CAS  Google Scholar 

  21. Maicas, S. (2001) The use of alternative technologies to develop malolactic fermentation in wine. Appl. Microbiol. Biotechnol. 56: 35–39.

    Article  PubMed  CAS  Google Scholar 

  22. Salou, P.; Loubière, P. and Pareilleux, A. (1994) Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl. Environ. Microbiol. 60: 1459–1466.

    PubMed  CAS  Google Scholar 

  23. Martineau, B.; Henick-Kling, T. and Acree, T. (1995) Reassessment of the influence of malolactic fermentation on concentration of diacetyl in wines. Am. J. Enol. Vitic. 46: 385–388.

    CAS  Google Scholar 

  24. Salih, A.G.; Drilleau, J.F.; Diviès, C. and Lenzi, P. (1987) Facteurs contribuant au contrôle de la transformation malolactique dans les cidres. Sciences des Aliments 7: 205–221.

    Google Scholar 

  25. Champagne, C.P.; Gardner, N. and Doyon, G. (1989) Production of Leuconostoc oenos biomass under pH control. Appl. Environ. Microbiol. 55: 2488–2492.

    PubMed  CAS  Google Scholar 

  26. Maicas, S.; Gonzalez-Cabo, P.; Ferrer, S. and Pardo, I. (1999) Production of Oenococcus oeni biomass to induce malolactic fermentation in wine by control of pH and substrate addition. Biotechnol. Lett. 21: 349–353.

    Article  CAS  Google Scholar 

  27. Masschelein, C.A.; Ryder, D.S. and Simon, J.P. (1994) Immobilized cell technology in beer production. Crit. Rev. Biotechnol. 14: 155–177.

    CAS  Google Scholar 

  28. Herrero, M.; Laca, A.; Garcia, L.A. and Diaz, M. (2001) Controlled malolactic fermentation in cider using O.oeni immobilized in alginate beads and comparison with free cell fermentation. Enzyme Microb. Technol. 28: 35–41.

    Article  PubMed  CAS  Google Scholar 

  29. Dallmann, K.; Buzas, Z. and Szajani, B. (1988) Continuous fermentation of apple juice by immobilized yeast cells. Biotechnol. Lett. 9: 577–580.

    Article  Google Scholar 

  30. O’Reilly, A. and Scott, J.A. (1993) Use of an ion-exchange sponge to immobilise yeast in high gravity apple based (cider) alcoholic fermentations. Biotechnol. Lett. 15: 1061–1066.

    Google Scholar 

  31. Scott, J.A. and O’Reilly, A. (1996) Co-immobilization of selected yeast and bacteria for controlled flavour development in an alcoholic cider beverage. Process Biochem. 31: 111–117.

    Article  CAS  Google Scholar 

  32. van Iersel, M.F.M.; Brouwer-Post, E.; Rombouts, F.M. and Abee, T. (2000) Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer. Enzyme Microb. Technol. 26: 602–607.

    Article  PubMed  Google Scholar 

  33. Nedovic, V.A.; Durieux, A.; Van Nedervelde, L.; Rosseels, P.; Vandegans, J.; Plaisant, A.M. and Simon, J.P. (2000) Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells. Enzyme Microb. Technol. 26: 834–839.

    Article  PubMed  CAS  Google Scholar 

  34. Durieux, A.; Bodo, E.; Nedovic, V. and Simon, J.P. (2002) Effect of yeast and Oenococcus oeni immobilisation on the formation of flavour components for cider production. In: Proceedings of the international Workshop Bioencapsulation X: Cell physiology and interactions of biomaterials and matrices. Prague, Czech Republic, April 2002; pp. 54–57.

    Google Scholar 

  35. Ding, W.A. and Vorlop, K.D. (1995) Gel aus Polyvinylalkohol und Verfahren zu seiner Herstellung. Patent DE 4327923.

    Google Scholar 

  36. Jekel, M.; Buhr, A.; Wilke, T. and Vorlop, K.D. (1998) Immobilization of biocatalysts in Lentikats. Chem. Eng. Technol. 21: 275–278.

    Article  CAS  Google Scholar 

  37. Wittlich, P.; Themann, A. and Vorlop, K.D. (2001) Conversion of glycerol to 1,3-propanediol by a newly isolated thermophilic strain. Biotechnol. Lett. 23: 463–466.

    Article  CAS  Google Scholar 

  38. Vaillant, H.; Formisyn, P. and Gerbaux, V. (1995) Malolactic fermentation of wine: study of the influence of some physico-chemical factors by experimental design assays. J. Appl. Bact. 79: 640–650.

    CAS  Google Scholar 

  39. Labarre, C.; Guzzo, J.; Cavin, J.F. and Diviès, C. (1996) Cloning and Characterisation of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos. Appl. Environ. Microbiol. 62: 1274–1282.

    PubMed  CAS  Google Scholar 

  40. Spettoli, P.; Bottacin, A.; Nuti, M.P. and Zamaroni, A. (1982) Immobilization of Leuconostoc oenos ML 34 in calcium alginate gels and its application to wine technology. Am. J. Enol. Vitic. 33: 1–5.

    CAS  Google Scholar 

  41. Mc Cord, J.D. and Ryu, D.D.Y. (1985) Development of malolactic fermentation process using immobilized whole cells and enzymes. Am. J. Enol. Vitic. 36: 214–218.

    CAS  Google Scholar 

  42. Maicas, S.; Pardo, I. and Ferrer, S. (2001) The potential of positively-charged cellulose sponge for malolactic fermentation of wine, using Oenococcus oeni. Enzyme Microb. Technol. 28: 415–419.

    Article  PubMed  CAS  Google Scholar 

  43. Rossi, J. and Clementi, F. (1984) L-malic catabolism by polyacrylamide gel entrapped Leuconostoc oenos. Am. J. Enol. Vitic. 63: 100–102.

    Google Scholar 

  44. Durieux, A.; Garre, V.; Mukamana, J.; Jourdain, J.M.; Silva, D.; Plaisant, A.M.; Defroyennes, J.P.; Foroni, G. and Simon, J.P. (1996) Leuconostoc oenos entrapment: applications to continuous malolactic fermentation. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized Cells: Basics and Applications. Elsevier Sciences; pp. 679–686.

    Google Scholar 

  45. Cabranes, C.; Moreno, J. and Mangas, J.J. (1998) Cider production with immobilized Leuconostoc oenos. J. Inst. Brew. 104: 127–130.

    CAS  Google Scholar 

  46. Durieux, A.; Nicolay, X. and Simon, J.P. (2000) Continuous malolactic fermentation by Oenococcus oeni entrapped in Lentikats. Biotechnol. Lett. 22: 1679–1684.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Durieux, A., Nicolay, X., Simon, JP. (2005). Application of Immobilisation Technology to Cider Production: A Review. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_16

Download citation

Publish with us

Policies and ethics