Skip to main content

Discoveries in oxygenic photosynthesis (1727–2003): a perspective

  • Chapter
Discoveries in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 20))

Abstract

We present historic discoveries and important observations, related to oxygenic photosynthesis, from 1727 to 2003. The decision to include certain discoveries while omitting others has been difficult. We are aware that ours is an incomplete timeline. In part, this is because the function of this list is to complement, not duplicate, the listing of discoveries in the other papers in these history issues of Photosynthesis Research. In addition, no one can know everything that is in the extensive literature in the field. Furthermore, any judgement about significance presupposes a point of view. This history begins with the observation of the English clergyman Stephen Hales (1677–1761) that plants derive nourishment from the air; it includes the definitive experiments in the 1960–1965 period establishing the two-photosystem and two-light reaction scheme of oxygenic photosynthesis; and includes the near-atomic resolution of the structures of the reaction centers of these two Photosystems, I and II, obtained in 2001–2002 by a team in Berlin, Germany, coordinated by Horst Witt and Wolfgang Saenger. Readers are directed to historical papers in Govindjee and Gest [(2002a) Photosynth Res 73: 1–308], in Govindjee, J. Thomas Beatty and Howard Gest [(2003a) Photosynth Res 76: 1–462], and to other papers in this volume for a more complete picture. Several photographs are provided here. Their selection is based partly on their availability to the authors (see Figures 1-15). Readers may view other photographs in Part 1 (Volume 73, Photosynth Res, 2002), Part 2 (Volume 76, Photosynth Res, 2003) and Part 3 (Volume 80, Photosynth Res, 2004) of the history issues of Photosynthesis Research. Photographs of most of the Nobel-laureates are included in Govindjee, Thomas Beatty and John Allen, this volume. For a complementary time line of anoxygenic photosynthesis, see H. Gest and R. Blankenship (this volume).

Choice of first names used in this paper is arbitrary: authors have used formal first names, nicknames, or just initials, depending on their availability, or their own preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adir N, Zer H, Shochat S and Ohad I (2003) Photoinhibition — a historical perspective. Photosynth Res 76: 343–370

    Article  PubMed  CAS  Google Scholar 

  • Åkerlund HE, Andersson B and Albertsson PÅ (1976) Isolation of Photosystem II enriched membrane vesicles from spinach thylakoids by phase partition. Biochim Biophys Acta 449: 525–535

    Article  PubMed  Google Scholar 

  • Albertsson P-A (2003) The contribution of photosynthetic pigments to the development of biochemical separation methods: 1900–1980. Photosynth Res 76: 217–225

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth Res 73: 139–148

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8: 15–19

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Bennett J, Steinbeck KE and Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291: 25–29

    Article  CAS  Google Scholar 

  • Allen JP (2004) My daily constitutional in Martinsried. Photosynth Res 80: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Allen MB, Arnon DI, Capindale JB, Whatley FR and Durham IJ (1955) Photosynthesis by isolated chloroplasts. III. Evidence for complete photosynthesis. J Am Chem Soc 77: 4149–4155

    Article  CAS  Google Scholar 

  • Allen MB, Whatley FR and Arnon DI (1958) Photosynthesis with isolated chloroplasts. VI. Rates of conversion of light into chemical energy in photosynthetic phosphorylation. Biochim Biophys Acta 27: 16–23

    Article  PubMed  CAS  Google Scholar 

  • Amesz J and Neerken S (2002) Excitation energy trapping in anoxygenic photosynthetic bacteria. Photosynth Res 73: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM (2002) Changing concepts about the distribution of Photosystems 1 and 2 between grana-appressed and stroma-exposed thylakoid membranes. Photosynth Res 73: 157–164

    Article  PubMed  CAS  Google Scholar 

  • Andersson B (1978) Separation of spinach chloroplast lamellae fragments by phase partition including the isolation of inside-out thylakoids, Doctoral thesis, Lund University, Sweden

    Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440

    Article  PubMed  CAS  Google Scholar 

  • Andersson B, Åkerlund HE and Albertsson PÅ (1977) Light induced reversible proton extrusion by spinach chloroplast Photosystem II vesicles isolated by phase partition. FEBS Lett 77: 141–145

    Article  PubMed  CAS  Google Scholar 

  • Andersson I, Knight S, Schneider G, Lindqvist Y, Lundqvist T, Brändén C-I and Lorimer GH (1989) Crystal structure of the active site of ribulose-bisphosphate carboxylase. Nature 337: 229–234

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24: 1–15

    PubMed  CAS  Google Scholar 

  • Arnon DI (1951) Extracellular photosynthetic reactions. Nature 167: 1008–1010

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Allen MB and Whatley FR (1954a) Photosynthesis by isolated chloroplasts. Nature 174: 394–396

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Whatley FR and Allen MB (1954b) Photosynthesis by isolated chloroplasts. II. Photosynthetic phosphorylation, the conversion of light energy into phosphate bond energy. J Am Chem Soc 76: 6324–6329

    Article  CAS  Google Scholar 

  • Avron M (1963) A coupling factor in photophosphorylation. Biochim Biophys Acta 77: 699–702

    Article  CAS  Google Scholar 

  • Avron (Abramsky) M and Jagendorf AT (1956) A TPNH diaphorase from chloroplasts. Arch Biochem Biophys 65: 475–490

    Article  PubMed  CAS  Google Scholar 

  • Bahr JT and Jensen RJ (1978) Activation of ribulose bisphosphate carboxylase in intact chloroplasts by CO2 and light. Arch Biochem Biophys 185: 38–48

    Article  Google Scholar 

  • Barber J (1982) Membrane surface charges and potentials in relation to structure and function. Annu Rev Plant Physiol 33: 261–295

    Article  CAS  Google Scholar 

  • Barber J (2004) Engine of life and big bang of evolution: a personal perspective. Photosynth Res 80: 137–155

    Article  PubMed  CAS  Google Scholar 

  • Bassham JA (2003) Mapping the carbon reduction cycle: a personal retrospective. Photosynth Res 76: 35–52

    Article  PubMed  Google Scholar 

  • Bedbrook JR, Smith SM and Ellis RJ (1980) Molecular cloning and sequencing of cDNA encoding the precursor to the small subunit of chloroplast ribulose-1,5-bisphosphate carboxylase. Nature 287: 692–697

    Article  CAS  Google Scholar 

  • Belyaeva OB (2003) Studies of chlorophyll biosynthesis in Russia. Photosynth Res 76: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Bendall DS (1994) Robert Hill. Biographical Memoirs of Fellows of the Royal Society. Vol 40, pp 141–171. The Royal Society, London

    Google Scholar 

  • Bendall DS (2004) The unfinished story of cytochrome f. Photosynth Res 80: 265–276

    Article  PubMed  CAS  Google Scholar 

  • Bengis C and Nelson N (1975) Purification and properties of the Photosystem I reaction center from chloroplasts. J Biol Chem 250: 2783–2788

    PubMed  CAS  Google Scholar 

  • Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 307: 478–480

    Google Scholar 

  • Bennett J, Steinbeck KE and Arntzen CJ (1980) Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane proteins. Proc Natl Acad Sci USA 45: 1696–1702

    Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant Photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Benson AA (1977) Philosophy of the tracer method. Radioisotopes 26(5): 348–356

    PubMed  CAS  Google Scholar 

  • Benson AA (2002) Following the path of carbon in photosynthesis: a personal story. Photosynth Res 73: 29–49

    Article  PubMed  CAS  Google Scholar 

  • Bennoun P (2002) The present model of chlororespiration. Photosynth Res 73: 273–277

    Article  PubMed  CAS  Google Scholar 

  • Berg S (1998) Seikichi Izawa (1926–1997). Photosynth Res 58: 1–4

    Article  CAS  Google Scholar 

  • Berthold DA, Babcock J and Yocum CF (1981) A highly resolved oxygen-evolving Photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134: 231–234

    Article  CAS  Google Scholar 

  • Biggins J and Mathis P (1988) Functional role of vitamin K in Photosystem I of the cyanobacterium Synechococystis 6803. Biochemistry 27: 1494–1500

    Article  PubMed  CAS  Google Scholar 

  • Bishop NI (1959) The reactivity of a naturally occurring quinone (Q-255) in photochemical reactions of isolated chloroplasts. Proc Natl Acad Sci USA 45: 1696–1702

    Article  PubMed  CAS  Google Scholar 

  • Black CC and Osmond B (2003) Crassulacean acid metabolism photosynthesis: ‘working the night shift.’ Photosynth Res 76: 329–341

    Article  PubMed  CAS  Google Scholar 

  • Blackman FF (1905) Optima and limiting factors. Ann Bot 19: 281–295

    Google Scholar 

  • Blackman FF and Matthaei Gabrielle LC (1905) Experimental researches on vegetable assimilation and respiration. IV. A quantitative study of carbon dioxide assimilation and leaf temperature in natural illumination. Proc R Soc London 76: 402–460

    CAS  Google Scholar 

  • Blair GE and Ellis RJ (1973) Protein synthesis in chloroplasts. I. Light-driven synthesis of large subunit of fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta 319: 223–234

    PubMed  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford, UK

    Google Scholar 

  • Blinks LR (1957) Chromatic transients in photosynthesis of red algae. In: Gaffron H, Brown AH, French CS, Livingston R, Rabinowitch EI, Strehler BL and Tolbert NE (eds) Research in Photosynthesis, pp 444–449. Interscience, New York

    Google Scholar 

  • Blinks LR (1974) Winthrop John Vanleuven Osterhout, August 2, 1871–April 9, 1964. Biographical Memoirs, Vol 44, pp 224–263. National Academy of Science Press, Washington, DC

    Google Scholar 

  • Blinks LR and Skow RK (1938) The time course of Photosystems as shown by rapid electrode method for oxygen. Proc Natl Acad Sci USA 24: 420–427

    Article  PubMed  CAS  Google Scholar 

  • Boardman NK and Anderson JM (1964) Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and chlorophyll b and their possible role in light reactions of photosynthesis. Nature 203: 166–167

    Article  CAS  Google Scholar 

  • Bogorad L (2003) Photosynthesis research: advances through molecular biology. Photosynth Res 76: 13–33

    Article  PubMed  Google Scholar 

  • Böhme H, Reimer S and Achim Trebst A (1971) The role of plastoquinone in photosynthesis: The effect of dibromo-thymoquinone on non cyclic and cyclic electron flow systems in isolated chloroplasts. Z Naturforsch 26b: 341–352

    Google Scholar 

  • Bonnet C (1754) Recherches sur l’usage des feuilles dans les plantes. Elie Luzac, fils, Göttingen/Leiden

    Google Scholar 

  • Borisov A (2003) The beginnings of research on biophysics of photosynthesis and initial contributions made by Russian scientists to its development. Photosynth Res 76: 413–426

    Article  PubMed  CAS  Google Scholar 

  • Boussingault JB (1864) De la végétation dans l’obscurité. Ann Sci Nat (Paris) I: 314–324

    Google Scholar 

  • Bowes G, Ogren WL and Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45: 716–722

    Article  PubMed  CAS  Google Scholar 

  • Boyer PD (2002) A research journey with ATP synthase. J Biol Chem 277(42): 39045–39061

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB and Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538

    PubMed  CAS  Google Scholar 

  • Brody SS (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950–1960. Photosynth Res 73: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Bruns C and Karplus PA (1995) Refined crystal structure of spinach ferredoxin reductase at 1.7 Å resolution:oxidized, reduced and 2′phospho-5′ AMP bound states. J Mol Biol 247: 125–145

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Schürmann P, Wolosiuk RA and Jacquot J-P (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res 73: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Butler WL (1962) Effects of red and far-red light on the fluorescence yield of chlorophyll in vivo. Biochim Biophys Acta 64: 309–317

    Article  PubMed  CAS  Google Scholar 

  • Calvin M (1989) Forty years of photosynthesis and related activities. Photosynth Res 23: 3–16

    Google Scholar 

  • Calvin M, Bassham JA and Benson AA (1950) Chemical transformations in photosynthesis. Fed Proc 9: 524–534

    PubMed  CAS  Google Scholar 

  • Carrel CJ, Zhang H, Cramer WA and Smith JL (1997) Biological diversity and identity in photosynthesis and respiration: structure of the lumen — side domain of the chloroplast Rieske protein. Structure 5: 1613–1625

    Article  Google Scholar 

  • Chapman M, Suh SW, Cascio D, Smith WW and Eisenberg D (1987) Sliding-layer conformational change limited by the quaternary structure of plant RuBisCO. Nature 329: 354–356

    Article  PubMed  CAS  Google Scholar 

  • Chapman MS, Suh SW, Curmi PMG, Cascio D, Smith WW and Eisenberg DS (1988) Tertiary structure of plant RuBisCO: Domains and their contacts. Science 241: 71–74

    PubMed  CAS  Google Scholar 

  • Clayton RK (1963) Toward the isolation of a photochemical reaction center in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 75: 312–323

    Article  PubMed  CAS  Google Scholar 

  • Clayton RK (2002) Research on photosynthetic reaction centers from 1932 to 1987. Photosynth Res 73: 63–71

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y, Padan E and Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol 123: 855–861

    PubMed  CAS  Google Scholar 

  • Colman PM, Freeman HC, Guss JM, Murata M, Noriss VA, Ramshaw JAM and Verikatappa MP (1978) X-ray crystal structure of plastocyanin at 2.7 Å resolution. Nature 257: 319–324

    Article  Google Scholar 

  • Commoner B, Heise JJ and Townsend J (1956) Light-induced paramagnetism in chloroplasts. Proc Natl Acad Sci USA 42: 710–718

    Article  PubMed  CAS  Google Scholar 

  • Cramer WA (2004) Ironies in photosynthetic electron transport: a personal perspective. Photosynth Res 80: 293–305

    Article  PubMed  CAS  Google Scholar 

  • Crane FL (1959) Isolation of two quinones with coenzyme Q activity from alfalfa. Plant Physiol 34: 546–551

    PubMed  CAS  Google Scholar 

  • Crofts AR (2004) The Q-cycle — a personal perspective. Photosynth Res 80: 223–243

    Article  PubMed  CAS  Google Scholar 

  • Dastur RH and Mehta RJ (1935) The study of the effect of blue-violet rays on photosynthesis. Ann Bot 49: 809–821

    CAS  Google Scholar 

  • Davenport HE (1960) A protein from leaves catalysing the reduction of metmyoglobin and triphospho-pyridine nucleotide in illuminated chloroplasts. Biochem J 77: 471–477

    PubMed  CAS  Google Scholar 

  • Davenport HE and Hill R (1952) The preparation and some properties of cytochrome f. Proc R Soc London Ser B 139: 327–345

    CAS  Google Scholar 

  • Davenport HE, Hill R and Whatley FR (1952) A natural factor catalyzing reduction of methemoglobin by isolated chloroplasts. Proc R Soc London Ser B 139: 346–358

    CAS  Google Scholar 

  • Debuchy R, Purton S and Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8: 2803–2809

    PubMed  CAS  Google Scholar 

  • de Kouchkovsky Y (2002) The laboratory of photosynthesis and its successors at Gif-sur-Yvette, France. Photosynth Res 73: 295–303

    Article  PubMed  Google Scholar 

  • de Saussure NTh (1804) Recherches chimique sur la vegetation. Nyon, Paris

    Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis (Nobel lecture). EMBO J 8: 2149–2169

    PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density maps at 3 Angstrom resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Article  PubMed  CAS  Google Scholar 

  • Delosme R (2003) On some aspects of photosynthesis revealed by photoacoustic studies: a critical evaluation. Photosynth Res 76: 289–301

    Article  PubMed  CAS  Google Scholar 

  • Delosme R and Joliot P (2002) Period 4 oscillations in chlorophyll a fluorescence. Photosynth Res 73: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B (2003) Linking the xanthophyll cycle with thermal energy dissipation. Photosynth Res 76: 73–80

    Article  PubMed  CAS  Google Scholar 

  • Dèpege N, Bellafiore S and Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299: 1572–1575

    Article  PubMed  CAS  Google Scholar 

  • DeVault D (1984) Quantum-Mechanical Tunneling in Biological Systems (2nd edition). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • DeVault D (1989) Tunneling enters biology. Photosynth Res 22: 5–10

    Article  Google Scholar 

  • DeVault D and Chance B (1966) Studies of photosynthesis using a pulsed laser: Temperature dependency of cytochrome oxidation rate in Chromatium vinosum. Evidence for tunneling. Biophys J 6: 825–847

    PubMed  CAS  Google Scholar 

  • Dismukes GC and Siderer Y (1980) EPR spectroscopic observations of a manganese center associated with water oxidation in spinach chloroplasts. FEBS Lett 121: 78–80

    Article  CAS  Google Scholar 

  • Dorner RW, Kahn A and Wildman SG (1957) Synthesis and decay of the cytoplasmic proteins during the life of the tobacco leaf. J Biol Chem 229: 945–952

    PubMed  CAS  Google Scholar 

  • Dutton HJ (1997) Carotenoid-sensitized photosynthesis. Photosynth Res 52: 175–185

    Article  CAS  Google Scholar 

  • Dutton HJ, Manning WM and Duggar BB (1943) Chlorophyll fluorescence and energy transfer in diatom Nitzschia closterium. J Phys Chem 47: 308–313

    Article  CAS  Google Scholar 

  • Duysens LNM (1952) Transfer of Excitation Energy in Photosynthesis. Doctoral thesis. State University, Utrecht, The Netherlands

    Google Scholar 

  • Duysens LNM (1954) Reversible changes in the absorption spectrum of Chlorella upon illumination. Science 120: 353–354

    CAS  PubMed  Google Scholar 

  • Duysens LNM (1989) The discovery of the two photosystems: A personal account. Photosynth Res 21: 61–80

    CAS  Google Scholar 

  • Duysens LNM, Amesz J and Kamp BM (1961) Two photochemical systems in photosynthesis. Nature 190: 510–511

    Article  PubMed  CAS  Google Scholar 

  • Eaglesham ARJ and Ellis RJ (1974) Protein synthesis in chloroplasts. II. Light-driven synthesis of membrane proteins by isolated pea chloroplasts. Biochim Biophys Acta 335: 396–407

    CAS  Google Scholar 

  • Edwards GE and Black Jr CC (1971) Isolation of mesophyll cells and bundle sheath cells from Digitaria sanguinalis (L.) Scop. leaves and a scanning microscopy study of the internal leaf cell morphology. Plant Physiol 47: 149–156

    PubMed  Google Scholar 

  • Ellis RJ (2004) From chloroplasts to chaperones: how one thing led to another. Photosynth Res 80: 333–343

    Article  CAS  Google Scholar 

  • Emerson R and Arnold W (1932a) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420

    Article  CAS  PubMed  Google Scholar 

  • Emerson R and Arnold W (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  CAS  PubMed  Google Scholar 

  • Emerson R and Chalmers RV (1958) Speculations concerning the function and phylogenetic significance of the accessory pigments of algae. Phycol Soc News Bull 11: 51–56

    Google Scholar 

  • Emerson R and Lewis CM (1941) Carbon dioxide exchange and the measurement of the quantum yield of photosynthesis. Am J Bot 28: 789–804

    Article  CAS  Google Scholar 

  • Emerson R and Lewis CM (1942) The photosynthetic efficiency of phycocyanin in Chroococus and the problem of carotenoid participation in photosynthesis. J Gen Physiol 25: 579–595

    Article  CAS  PubMed  Google Scholar 

  • Emerson R and Lewis CM (1943) The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Am J Bot 30: 165–178

    Article  CAS  Google Scholar 

  • Emerson R and Rabinowitch E (1960) Red drop and role of auxiliary pigments in photosynthesis. Plant Physiol 35: 477–485

    PubMed  CAS  Google Scholar 

  • Emerson R, Chalmers RV and Cederstrand CN (1957) Some factors influencing the long wave limit of photosynthesis. Proc Natl Acad Sci USA 43: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Engelmann TW (1882) Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum. Bot Z 40: 419–426

    Google Scholar 

  • Engelmann TW (1883) Farbe und Assimilation. Bot Z 41: 1–13, 17–29

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot Z 44: 43–52, 64–69

    Google Scholar 

  • Evans MCW, Reeves SG and Cammack R (1974) Determination of the oxidation reduction potential of the bound iron-sulphur proteins of primary electron acceptor complex of Photosystem 1 in spinach chloroplasts. FEBS Lett 49: 111–114

    Article  PubMed  CAS  Google Scholar 

  • Feher G (1998) Three decades of research in bacterial photosynthesis and the road leading to it: a personal account. Photosynth Res 55: 1–40

    Article  Google Scholar 

  • Ferguson WJ, Braunschweiger KI, Braunschweiger WR, Smith JR, McCormick JJ, Wasmann CC, Jarvis NP, Bell DH and Good NE (1980) Hydrogen ion buffers for biological research. Anal Biochem 104: 300–310

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1837

    Article  PubMed  CAS  Google Scholar 

  • Fish LE, Kück U and Bogorad L (1985) Two partially homogeneous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of Photosystem I. J Biol Chem 260: 1413–1421

    PubMed  CAS  Google Scholar 

  • Floyd RA, Chance B and DeVault D (1971) Low temperature photo-induced reactions in green leaves and chloroplasts. Biochim Biophys Acta 226: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Frasch WD and Sayre RT (2002) Remembering George Cheniae, who never compromised his high standards of science. Photosynth Res 70: 245–247

    Article  Google Scholar 

  • French CS (1961) Light, pigments and photosynthesis. In: McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life, pp 447–474. The Johns Hopkins Press, Baltimore, Maryland

    Google Scholar 

  • French CS and Anson ML (1941) Oxygen production by isolated chloroplasts. Am J Bot 28: 12s (abstract)

    Google Scholar 

  • Frenkel A (1954) Light induced phosphorylation by cell-free preparations of photosynthetic bacteria. J Am Chem Soc 76: 5568–5570

    Article  CAS  Google Scholar 

  • Fromme P and Mathis P (2004) Unraveling the Photosystem I reaction center: a history, or the sum of many efforts. Photosynth Res 80: 109–124

    Article  PubMed  CAS  Google Scholar 

  • Gaffron H and Wohl K (1936) Zur Theorie der Assimilation. Naturwissenschaften 24: 81–90; 103–107

    Article  CAS  Google Scholar 

  • Gantt E and Conti S (1966) Phycobiliprotein localization in algae. In: Brookhaven Symposium in Biology No.19. Energy Conversion by the Photosynthetic Apparatus, 393–405. Biology Department, Brookhaven National Laboratory, Upton, New York

    Google Scholar 

  • Gantt E, Lipschultz CA and Zilinskas B (1976) Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim Biophys Acta 430: 375–388

    Article  PubMed  CAS  Google Scholar 

  • Gest H (2000) Bicentenary homage to Dr. Jan Ingen-Housz, MD (1730–1799), pioneer of photosynthesis research. Photosynth Res 63: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Gest H (2002) History of the word photosynthesis and evolution of its definition. Photosynth Res 73: 7–10

    Article  PubMed  CAS  Google Scholar 

  • Gest H (2004) Samuel Ruben’s contributions to research on photosynthesis and bacterial metabolism with radioactive carbon. Photosynth Res 80: 77–83

    Article  PubMed  CAS  Google Scholar 

  • Gest H and Blankenship RE (2004) Time line of discoveries: anoxygenic bacterial photosynthesis. Photosynth Res 80: 59–70

    Article  PubMed  CAS  Google Scholar 

  • Good N (1960) Activation of the Hill reaction by amines. Biochim Biophys Acta 40: 502–517

    Article  PubMed  CAS  Google Scholar 

  • Good NE and Izawa S (1972) Hydrogen ion buffers. Meth Enzymol 24: 53–68

    Article  PubMed  CAS  Google Scholar 

  • Goodin DB, Yachandra VK, Britt RD, Sauer K and Klein MP (1984) State of manganese in the photosynthetic apparatus. 3. Light-induced changes in X-ray absorption (K-edge) energies of manganese in photosynthetic membranes. Biochim Biophys Acta 767: 209–216

    Article  CAS  Google Scholar 

  • Govindjee (1989) E.L. Smith: the discovery of chlorophyll protein complex during 1937–1941. Photosynth Res 16: 291–292

    Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: cholorophyll a fluorescence. Aust J Plant Physiol 22: 131–160

    Article  CAS  Google Scholar 

  • Govindjee (1999a) On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: A historical note. Photosynth Res 59: 249–254

    Article  CAS  Google Scholar 

  • Govindjee (1999b) Carotenoids in photosynthesis: An historical perspective. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 1–19. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Govindjee (2000) Milestones in photosynthesis Research. In: Yunus M, Pathre U and Mohanty P (eds) Probing Photosynthesis: Mechanisms, Regulation and Adaptation, pp 9–39. Taylor and Francis, London

    Google Scholar 

  • Govindjee and Gest H (eds) (2002a) Celebrating the millennium: historical highlights of photosynthesis research, Part 1. Photosynth Res 73: 1–308

    Google Scholar 

  • Govindjee and Gest H (2002b) Celebrating the millennium: historical highlights of photosynthesis research. Photosynth Res 73: 1–6

    Article  Google Scholar 

  • Govindjee and Krogmann D (2002) A list of personal perspectives with selected quotations, along with lists of tributes, historical notes, Nobel and Kettering awards related to photosynthesis. Photosynth Res 73: 11–20

    Article  CAS  Google Scholar 

  • Govindjee and Rabinowitch E (1960) Two forms of chlorophyll a in vivo with distinct photochemical functions. Science 132: 159

    Google Scholar 

  • Govindjee, Ichimura S, Cederstrand C and Rabinowitch E (1960) Effect of combining far-red light with shorter wave light in the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89: 322–323

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Barber J, Cramer WA, Goedheer JHC, Lavorel J, Marcelle R and Zilinskas B (eds) (1986) Excitation and electron transfer in photosynthesis — special issue dedicated to Warren L Butler. Photosynth Res 10: 147–518

    Google Scholar 

  • Govindjee, Amesz J and Knox RS (1996) Photosynthetic unit: antenna and reaction centers. Photosynth Res 48: 1–319

    Article  CAS  Google Scholar 

  • Govindjee, Sestak Z and Peters WR (2002) The early history of ‘Photosynthetica’, ‘Photosynthesis Research’, and their publishers. Photosynthetica 40: 1–11

    Article  Google Scholar 

  • Govindjee, Beatty JT and Gest H (eds) (2003a) Celebrating the millennium: historical highlights of photosynthesis research, Part 2. Photosynth Res 76: 1–462

    Google Scholar 

  • Govindjee, Beatty JT and Gest H (2003b) Celebrating the millennium: historical highlights of photosynthesis research, Part 2. Photosynth Res 76: 1–11 (Editorial)

    Article  CAS  Google Scholar 

  • Govindjee, Allen JF and Beatty JT (2004a) Celebrating the millennium: historical highlights of photosynthesis research, Part 3. Photosynth Res 80: 1–13 (Editorial)

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Allen JF and Beatty JT (2004b) Celebrating the millennium: historical highlights of photosynthesis research, Part 3. Photosynth Res 80: 1–466

    Article  PubMed  CAS  Google Scholar 

  • Govindjee R, Thomas JB and Rabinowitch E (1961) Second Emerson effect in the Hill reaction of Chlorella cells with quinone as oxidant. Science 132: 421

    Google Scholar 

  • Govindjee R, Govindjee and Hoch G (1962) The Emerson enhancement effect in TPN-photoreduction by spinach chloroplasts. Biochem Biophys Res Comm 9: 222–225

    Article  CAS  Google Scholar 

  • Goyal A (1998) Nathan Edward Tolbert (1919–1998). Ed Tolbert and his love for science: a journey from sheep ranch continues. Photosynth Res 65: 1–6

    Article  Google Scholar 

  • Gregorieva G and Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett B 127: 192–210

    Google Scholar 

  • Grossman AR (2003) A molecular understanding of complementary chromatic adaptation. Photosynth Res 76: 207–215

    Article  PubMed  CAS  Google Scholar 

  • Haehnel W, Hesse V and Propper A (1980) Electron transfer from plastocyanin to P700. FEBS Lett 111: 79–82

    Article  CAS  Google Scholar 

  • Hales S (1727) Vegetable Staticks, or, an Account of Some Statistical Experiments on the Sap in Vegetation. W. Innys, London

    Google Scholar 

  • Hangarter RP and Gest H (2004) Pictorial demonstrations of photosynthesis. Photosynth Res 80: 421–425

    Article  PubMed  CAS  Google Scholar 

  • Hatch MD (2002) C4 photosynthesis: discovery and resolution. Photosynth Res 73: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Hatch MD and Slack CR (1966) Photosynthesis in sugar cane leaves: a new carboxylation reaction and the pathway of sugar formation. Biochem J 101: 103–111

    PubMed  CAS  Google Scholar 

  • Hauska G (2004) The isolation of a functional cytochrome b 6 f complex: from lucky encounter to rewarding experiences. Photosynth Res 80: 277–291

    Article  PubMed  CAS  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73: 223–231

    Article  PubMed  CAS  Google Scholar 

  • Heldt H-W (2002) Three decades in transport business: studies of metabolite transport in chloroplasts — a personal perspective. Photosynth Res 73: 265–272

    Article  PubMed  CAS  Google Scholar 

  • Hill R (1937) Oxygen evolution by isolated chloroplasts. Nature 139: 881–882

    CAS  Google Scholar 

  • Hill R (1939) Oxygen production by isolated chloroplasts. Proc R Soc London Ser B 127: 192–210

    Article  CAS  Google Scholar 

  • Hill R (1965) The biochemist’s green mansions. The photosynthetic electron transport chain in plants. Essays Biochem 1: 121–151

    PubMed  CAS  Google Scholar 

  • Hill R (1972) Joseph Priestley (1733–1804) and his discovery of photosynthesis in 1771. In: Forti G, Avron M and Melandri A (eds) Photosynthesis, Two Centuries after its Discovery by Joseph Priestley, pp 1–18. Dr Junk Publishers, The Hague, The Netherlands

    Google Scholar 

  • Hill R and Bendall F (1960) Function of the cytochrome components in chloroplasts: A working hypothesis. Nature 186: 136–137

    Article  CAS  Google Scholar 

  • Hill R and Bonner Jr WD (1961) The nature and possible function of chloroplast cytochromes. In: McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life, pp 424–435. The Johns Hopkins Press, Baltimore, Maryland

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K and Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol Gen Genet 217: 185–194

    PubMed  CAS  Google Scholar 

  • Hiyama T and Ke B (1971a) A new photosynthetic pigment, ‘P430’: its possible role as the primary acceptor of Photosystem I. Proc Natl Acad Sci USA 63: 1010–1013

    Article  Google Scholar 

  • Hiyama T and Ke B (1971b) A further study of P430: a possible primary acceptor of Photosystem I. Arch Biochem Biophys 147: 99–108

    Article  PubMed  CAS  Google Scholar 

  • Hoff AJ and Aartsma TJ (2002) Obituary: Jan Amesz (11 March 1934–29 January 2001). Photosynth Res 71: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Homann PH (2002) Chloride and calcium in Photosystem II: from effects to enigma. Photosynth Res 73: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Homann PH (2003) Hydrogen metabolism of green algae: discovery and early research — a tribute to Hans Gaffron and his coworkers. Photosynth Res 76: 93–103

    Article  PubMed  CAS  Google Scholar 

  • Horecker BL, Hurwitz J and Weissbach A (1956) The enzymatic synthesis and properties of ribulose-1,5-diphosphate. J Biol Chem 218: 785–794

    PubMed  CAS  Google Scholar 

  • Huzisige H and Ke B (1993) Dynamics of the history of photosynthesis research. Photosynth Res 38: 185–209

    Article  CAS  Google Scholar 

  • Ingen-Housz J (1779) Experiments upon Vegetables, Discovering Their Great Power of Purifying the Common Air in the Sunshine and of Injuring it in the Shade and at Night; to Which is Joined a New Method of Examining the Accurate Degree of Salubrity of the Atmosphere. Elmsley and Payne, London

    Google Scholar 

  • Ingen-Housz J (1796) Food of Plants and the Renovation of the Soil. Appendix to the Outlines of the Fifteenth Chapter of the Proposed General Report from the Board of Agriculture. Elmsley and Payne, London

    Google Scholar 

  • Jacoby WB, Brummond DO and Ochoa S (1956) Formation of 3-phophoglyceric acid by carbon dioxide fixation with spinach leaf enzymes. J Biol Chem 218: 811–822

    Google Scholar 

  • Jagendorf AT (1998) Chance, luck and photosynthesis research: An inside story. Photosynth Res 57: 215–229

    Article  Google Scholar 

  • Jagendorf AT (2002) Photophosphorylation and the chemiosmotic perspective. Photosynth Res 73: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Jagendorf AT and Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55: 170–177

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG and Bassham JA (1966) Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci USA 56: 1095–1101

    Article  PubMed  CAS  Google Scholar 

  • Joliot P (1996) Rene Wurmser. Obituary. Photosynth Res 48: 321–326

    Article  CAS  Google Scholar 

  • Joliot P (2003) Period-four oscillation of the flash-induced oxygen formation in photosynthesis. Photosynth Res 76: 65–72

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (2003) Excitation transfer between photosynthetic units: the 1964 experiment. Photosynth Res 76: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Barbieri G and Chabaud R (1969) Un nouveau modele des centres photochimiques du systeme II. Photochem Photobiol 10: 309–329

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three dimensional structure of cyanobacterial Photosystem I at 2.5 Angstrom resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kamen M (1963) Primary Processes in Photosynthesis. Academic Press, New York

    Google Scholar 

  • Kamen M (1986) On creativity of eye and ear: a commentary on the career of T.W. Engelmann. Proc Am Phil Soc 130: 232–246

    CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7 Angstrom resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotami H, Tanaka M and Sugiura M (1996) Synechocystis sp. Strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein regions. DNA Res 3: 109–136

    Article  PubMed  CAS  Google Scholar 

  • Karpilov YS (1960) The distribution of radioactive carbon 14 amongst the products of photosynthesis of maize. Trudy Kazansk Sel’shokoz Institute 41: 15–24

    CAS  Google Scholar 

  • Karrer P (1934) Über Carotinoidfarbstoffe. Z Angew Chemie 42: 918–924

    Google Scholar 

  • Katoh S (2003) Early research on the role of plastocyanin in photosynthesis. Photosynth Res 76: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Kautsky H, Appel W and Armann H (1960) Chlorophyllfluoreszenz und Kohlensäureassimilation. XIII. Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem Z 332: 227–290

    Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Ke B (2002) P430: a retrospective, 1971–2001. Photosynth Res 73: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Wallsgrove RM and Miflin BJ (1978) Photorespiratory nitrogen cycle. Nature 275: 741–743

    Article  Google Scholar 

  • Khanna R, Graham JR, Myers J and Gantt E (1983) Phycobilisome composition and possible relationship to reaction centers. Arch Biochem Biophys 224: 534–542

    Article  PubMed  CAS  Google Scholar 

  • Kindle KL, Schnell RA, Fernandez E and Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109: 2589–2601

    Article  PubMed  CAS  Google Scholar 

  • Kirby JA, Robertson AS, Smith JP, Cooper SR and Klein MP (1981) The site of manganese in the photosynthetic apparatus. 1. EXAFS studies on chloroplasts and di m-oxo bridged di-manganese compounds. J Am Chem Soc 103: 5529–5537

    Article  CAS  Google Scholar 

  • Klimov (2003) Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. Photosynth Res 76: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA and Krasnovsky AA (1977) Reduction of pheophytin in primary light reaction of Photosystem II. FEBS Lett 82: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1956) On the reversible absorption change at 705μm in photosynthetic organisms. Biochim Biophys Acta 22: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1959) Light-induced absorption changes in photosynthetic organisms. II. A split-beam difference spectrophotometer. Plant Physiol 34: 184–192

    PubMed  CAS  Google Scholar 

  • Kok B and Hoch G (1961) Spectral changes in photosynthesis. In: McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life, pp 397–423. The Johns Hopkins Press, Baltimore, Maryland

    Google Scholar 

  • Kok B, Forbush M and McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution 1. Photochem Photobiol 11: 457–475

    PubMed  CAS  Google Scholar 

  • Kortschak HP, Hartt CE and Burr GO (1965) Carbon dioxide fixation in sugarcane leaves. Plant Physiol 40: 209–213

    PubMed  CAS  Google Scholar 

  • Krasnovsky AA (1948) Reversible photochemical reduction of chlorophyll by ascorbic acid. Dokl Akad Nauk SSSR 60: 421–424

    Google Scholar 

  • Krasnovsky Jr AA (2003) Chlorophyll isolation, structure and function: major landmarks of the early history of research in the Russian Empire and the Soviet Union. Photosynth Res 76: 389–403

    Article  CAS  Google Scholar 

  • Krogmann DW, Jagendorf AT and Avron M (1959) Uncouplers of spinach chloroplast photophosphorylation. Plant Physiol 34: 272–277

    PubMed  CAS  Google Scholar 

  • Kuang Ting-Yun, Xu Chunhe, Li Liang-Bi, Shen Yun-Kang (2003) Photosynthesis research in China. Photosynth Res 76: 451–458

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrand W (1984) Three dimensional structure of the light-harvesting chlorophyll a/b protein complex. Nature 307: 478–480

    Article  Google Scholar 

  • Kühlbrand W and Wang DN (1991) Three dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350: 130–134

    Article  Google Scholar 

  • Kühlbrand W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light harvesting complex by electron crystallography. Nature 367: 614–621

    Article  Google Scholar 

  • Kühn R (1935) Plant pigments. Ann Rev Biochem 4: 479–496

    Article  Google Scholar 

  • Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Lane N (2002) Oxygen. The Molecule That Made the World. Oxford University Press, Oxford

    Google Scholar 

  • Larkum AWD (2003) A tribute: contributions of Henrik Lundegårdh to photosynthesis. Photosynth Res 76: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Lavorel J (1975) Luminescence. In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 223–317. Academic Press, New York

    Google Scholar 

  • Lewin RA (2002) Prochlorophyta — a matter of class distinctions. Photosynth Res 73: 59–61

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Angstrom resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Losada M, Whatley FR and Arnon DI (1961) Separation of two light reactions in non-cyclic phosphorylation of green plants. Nature 190: 606–610

    Article  PubMed  CAS  Google Scholar 

  • Lubimenko VN (1910) Concentration of chlorophyll in chlorophyll grain and energy of photosynthesis. Trudy St Petersb Society of Naturalists 41: 1–266 [in Russian]

    Google Scholar 

  • Lubimenko VN and Brilliant VA (1924) The Color of Plants. Plant Pigments. Gosizdat Publisher, Leningrad [in Russian]

    Google Scholar 

  • Lynch VA and French CS (1957) β Carotene, an active component of chloroplasts. Arch Biochem Biophys 70: 382–391

    Article  PubMed  CAS  Google Scholar 

  • Malkin R and Bearden AJ (1971) Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperatures as detected by EPR spectroscopy. Proc Natl Acad Sci USA 68: 16–19

    Article  PubMed  CAS  Google Scholar 

  • Marcus RA (1996) Electron transfer reactions in chemistry. Theory and experiment (Chapter 10). In: Bendall DS (ed) Protein Electron Transfer. Bios Scientific, Oxford

    Google Scholar 

  • Martin PG (1979) Amino acid sequence of the small subunit of ribulose-1,5-bisphosphate carboxylase from spinach. Aust J Plant Physiol 6: 401–408

    CAS  Google Scholar 

  • Martin W and Kowallik KV (1999) Annotated English translation of Mereschkowsky’s 1905 paper Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Eur J Phycol 34: 287–295

    Google Scholar 

  • Martinez S, Huang D, Sczcepaniak A, Cramer WC and Smith JL (1994) Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2: 95–105

    Article  PubMed  CAS  Google Scholar 

  • Mayaudon J (1957) Study of association between the main nucleoprotein of green leaves and carboxdismutase. Enzymologia 18: 345–354

    Google Scholar 

  • Mayaudon J, Benson AA and Calvin M (1957) Ribulose-1,5-diphosphate from and CO2 fixation by Tetragonia expansa leaves extract. Biochim Biophys Acta 23: 342–351

    Article  PubMed  CAS  Google Scholar 

  • Mayer JR (1845) Die organische Bewegung in ihrem Zussamenhag mit dem Stoffwechsel: Ein Beitrag zur Naturkunde. Verlag der C. Drechsler’schen Buchhandlung, Heilbronn

    Google Scholar 

  • McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life. The Johns Hopkins Press, Baltimore, Maryland

    Google Scholar 

  • McIntosh L, Poulson C and Bogorad L (1980) Chloroplast gene sequence for the large subunit of ribulose bisphosphate carboxylase of maize. Nature 288: 556–560

    Article  CAS  Google Scholar 

  • Menke W (1990) Retrospective of a botanist. Photosynth Res 25: 77–82

    Article  Google Scholar 

  • Merchant S and Bogorad L (1986) Regulation by copper of the expression of plastocyanin and cytochrome c-552 in Chlamydomonas reinhardi. Mol Cell Biol 6: 462–469

    PubMed  CAS  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25: 593–604

    Google Scholar 

  • Mimuro M (2002) Visualization of excitation energy transfer processes in plants and algae. Photosynth Res 73: 127–132

    Article  Google Scholar 

  • Mitchell P (1961a) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1961b) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Res, Bodmin, Cornwall, UK

    Google Scholar 

  • Mitchell P (1975) Protonmotive Q-cycle-general formulation. FEBS Lett 59: 137–139

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanism of the proton motive function of cytochrome systems. J Theor Biol 62: 327–367

    Article  PubMed  CAS  Google Scholar 

  • Myers J (2002) In one era and out the other. Photosynth Res 73: 21–28

    Article  PubMed  CAS  Google Scholar 

  • Myers J and French CS (1960) Evidences from action spectra for a specific participation of chlorophyll b in photosynthesis. J Gen Physiol 43: 723–736

    Article  PubMed  CAS  Google Scholar 

  • Nelson N and Ben-Shem A (2002) Photosystem I reaction center: past and future. Photosynth Res 73: 193–206

    Article  PubMed  CAS  Google Scholar 

  • Nelson N and Newman J (1972) Isolation of a cytochrome b 6 f particle from chloroplasts. J Biol Chem 247: 1817–1824

    PubMed  CAS  Google Scholar 

  • Ochoa S and Vishniac W (1951) Photochemical reduction of pyridine nucleotides by spinach grana and coupled to carbon dioxide fixation. Nature 167: 768–769

    Article  PubMed  Google Scholar 

  • Ogawa T (2003) Physical separation of chlorophyll protein complexes. Photosynth Res 76: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL (2003) Affixing the O to rubisco: discovering the source of photorespiratory glycolate and its regulation. Photosynth Res 76: 53–63

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL and Bowes G (1971) Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biol 230: 159–160

    PubMed  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sanao T, Sano S, Umesone K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574

    Article  CAS  Google Scholar 

  • Osterhout WJV (1918a) Dynamical aspects of photosynthesis. Proc Natl Acad Sci USA 4: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Osterhout WJV (1918b) On the dynamics of photosynthesis. J Gen Physiol 1: 1–16

    Article  CAS  PubMed  Google Scholar 

  • Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Ann Rev Plant Physiol 30: 27–40

    Article  CAS  Google Scholar 

  • Papageorgiou GC (2003) Photosynthesis research in Greece: a historical snapshot (1960–2001). Photosynth Res 76: 427–433

    Article  PubMed  CAS  Google Scholar 

  • Park R and Sane PV (1981) Distribution of function and structure in chloroplast lamellae. Annu Rev Plant Physiol 22: 395–430

    Article  Google Scholar 

  • Parrett KC, Mehari T and Golbeck JH (1990) Resolution and reconstitution of the cyanobacterial Photosystem I complex. Biochim Biophys Acta 1015: 341–352

    Article  CAS  Google Scholar 

  • Parson WW (1989) Don DeVault. A tribute on the occasion of his retirement. Photosynth Res 22: 11–13

    Article  Google Scholar 

  • Parson WW (2003) Electron donors and acceptors in the initial steps of photosynthesis in purple bacteria: a personal account. Photosynth Res 76: 81–92

    Article  PubMed  CAS  Google Scholar 

  • Pearlstein RM (2002) Photosynthetic exciton theory in the 1960s. Photosynth Res 73: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J and Caventou JB (1818) Sur la matiere verte des feuilles. Ann Chim Phys Ser 2:9: 194–196

    Google Scholar 

  • Pfannschmidt T, Nilsson A and Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397: 625–628

    Article  CAS  Google Scholar 

  • Pirson A (1994) Sixty three years in algal physiology and photosynthesis. Photosynth Res 40: 207–222

    Article  CAS  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determinations of chlorophylls a and b. Photosynth Res 73: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Portis AR and Salvucci ME (2002) The discovery of Rubisco activase — yet another story of serendipity. Photosynth Res 73: 257–264

    Article  CAS  Google Scholar 

  • Priestley J (1772) Observations on different kinds of air. Phil Trans R Soc London 62: 147–264

    Google Scholar 

  • Qyuale JR, Fuller RC, Benson AA and Calvin M (1954) Enzymatic carboxylation of ribulose diphosphate. J Am Chem Soc 76: 3610–3612

    Article  Google Scholar 

  • Rabinowitch EI (1945) Photosynthesis and Related Processes, Vol I. Chemistry of Photosynthesis, Chemosynthesis and Related Processes in vitro and in vivo. See Chapter 2, pp 12–28. Interscience Publishers, New York, 599 pp

    Google Scholar 

  • Rabinowitch EI (1951) Photosynthesis and Related Processes, Vol II, Part 1. Spectroscopy and Fluorescence of Photosynthetic Pigments; Kinetics of Photosynthesis, pp 603–1208. Interscience Publishers, New York

    Google Scholar 

  • Rabinowitch EI (1956) Photosynthesis and Related Processes, Vol II (Part 2). Kinetics of Photosynthesis (continued); Addenda to Vol I and Vol II, Part 1, pp 1211–2088. Interscience Publishers, New York

    Google Scholar 

  • Rabinowitch EI and Govindjee (1961) Different forms of chlorophyll a in vivo and their photochemical function. In: McElroy WD and Glass B (eds) (1961) A Symposium on Light and Life, pp 378–391. The Johns Hopkins Press, Baltimore, Maryland

    Google Scholar 

  • Rabinowitch EI and Weiss J (1937) Reversible oxidation of chlorophyll. Proc R Soc London Ser A 162: 251–267

    Article  CAS  Google Scholar 

  • Raghavendra AS, Sane PV and Mohanty P (2003) Photosynthesis research in India: from yield physiology to molecular biology. Photosynth Res 76: 435–450

    Article  PubMed  CAS  Google Scholar 

  • Reed DW and Clayton R (1968) Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides. Biochem Biophys Res Commun 30: 471–475

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2003) Apparatus and mechanism of photosynthetic oxygen evolution: historical lines of research and current state of the art. Photosynth Res 76: 269–288

    Article  PubMed  CAS  Google Scholar 

  • Renger G and Govindjee (eds) (1993) How plants and cyanobacteria make oxygen: 25 years of period four oscillations. Photosynth Res 38: 211–469

    Google Scholar 

  • Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29: 209–230

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD (2002) The three genomes of Chlamydomonas. Photosynth Res 73: 285–293

    Article  PubMed  CAS  Google Scholar 

  • Ruben S and Kamen MD (1941) Long-lived radioactive carbon: C14. Phys Rev 59: 349–354

    Article  CAS  Google Scholar 

  • Ruben S, Kamen MD, Hassid WZ and DeVault D (1939) Photosynthesis with radiocarbon. Science 90: 570–571

    CAS  PubMed  Google Scholar 

  • Sachs J (Saxa Julia) (1853) Rosmluva o růstu bylin. Živa Časopis Přírodnický 1: 139–146

    Google Scholar 

  • Sachs J (1862) Über den Einfluss des Lichtes auf die Bildung des Amylums in den Chlorophyllkornern. Bot Z 20: 365–373

    Google Scholar 

  • Sachs J (1864) Über die Auflösung und Wiederbildung des Amylums in den Chlorophyllkornern bei wechselnder Beleuchtung. Bot Z 22: 189–294

    Google Scholar 

  • Sachs J (1892) Über Pflanzen-physiologie. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • San Pietro A and Lang HM (1956) Accumulation of reduced pyridine nucleotides by illuminated grana. Science 124: 118–119

    CAS  Google Scholar 

  • Satoh K (2003) The identification of the Photosystem II reaction center. Photosynth Res 76: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Scarisbrick R (1947) Haematin compounds in plants. Ann Rep Progr Chem 44: 226–236

    Google Scholar 

  • Scheele CW (1781) Traite chimique de l’air et du feu. Rue et Hôtel Serpente, Academie Royale des Sciences, Paris, France

    Google Scholar 

  • Schneider G, Lindqvist Y, Brändén C-I and Lorimer GH (1986) Three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at 2.9å resolution. EMBO J 5: 3409–3415

    PubMed  CAS  Google Scholar 

  • Seibert M and Wasielewski MR (2003) The isolated Photosystem II reaction center — first attempts to directly measure the kinetics of primary charge separation. Photosynth Res 76: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Senebier J (1783) Memoires physico-chimiques sur l’influence de la lumiere solaire pour modifier les etres des trios regnes de la nature et surtout ceux du regne vegetal. B. Chirol, Geneva

    Google Scholar 

  • Senebier J (1788) Experiences sur l’action de la lumiere solaire dans la vegetation. Chez Briande, Paris

    Google Scholar 

  • Shen Y-K (1994) Dynamic approaches to the mechanism of photosynthesis. Photosynth Res 39: 1–13

    Article  CAS  Google Scholar 

  • Shen Y-K and Shen GM (1962) The light intensity effect and intermediate steps of photophosphorylation. Sci Sinica 11: 1097–1106

    CAS  Google Scholar 

  • Shestakov SV (2002) Gene-targeted and site-directed mutagenesis of photosynthesis genes in cyanobacteria. Photosynth Res 73: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Shibata K (1957) Spectroscopic studies on chlorophyll formation in intact leaves. J Biochem 44: 147–173

    CAS  Google Scholar 

  • Shin M (2004) How is ferredoxin-NADP reductase involved in the NADP photoreduction of chloroplasts? Photosynth Res 80: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda K, Takaiwa F, Kato A, Tohdoh N, Shimada H and Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Sironval C, Michel-Wolwertz MR and Madsen A (1965) On the nature and possible functions of the 673-and 684-nm forms in vivo of chlorophyll. Biochim Biophys Acta 94: 344–354

    PubMed  CAS  Google Scholar 

  • Smith EL (1938) Solutions of chlorophyll-protein compounds (phyllochlorins) extracted from spinach. Science 88: 170–171

    CAS  PubMed  Google Scholar 

  • Smith JHC and Young VMK (1956) Chlorophyll formation and accumulation in plants. In: Hollaender A (ed) Radiation Biology, Vol 3, pp 393–442. McGraw Hill Book, New York

    Google Scholar 

  • Soret JL (1883) Analyse spectrale: Sur le spectre d’absorption du song dans la partie violette et ultra-violette. Compt Rend 97: 1269–1273

    Google Scholar 

  • Spoehr HA (1919) The development of conceptions of photosynthesis since Ingen-housz. Sci Mon July: 32–46

    Google Scholar 

  • Spoehr HA and McGee JM (1924) Absorption of carbon dioxide the first step in photosynthesis. Science 59: 513–514

    CAS  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76: 185–196

    Article  PubMed  CAS  Google Scholar 

  • Staub JM and Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4: 39–45

    Article  PubMed  CAS  Google Scholar 

  • Stemler AJ (2002) The bicarbonate effect, oxygen evolution and the shadow of Otto Warburg. Photosynth Res 73: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Stokes GG (1852) On the change of refrangibility of light. Phil Trans R Soc London 142: 463–562

    Google Scholar 

  • Strehler B and Arnold WA (1951) Light production by green plants. J Gen Physiol 34: 809–820

    Article  PubMed  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (2003) History of chloroplast genomics. Photosynth Res 76: 371–377

    Article  PubMed  CAS  Google Scholar 

  • Tagawa K and Arnon DI (1962) Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 195: 537–543

    Article  PubMed  CAS  Google Scholar 

  • Tagawa K, Tsujimoto HY and Arnon DI (1963) Analysis of photosynthetic reactions by the use of monochromatic light. Nature 199: 1247–1252

    Article  PubMed  CAS  Google Scholar 

  • Tamura N and Cheniae G (1987) Photoactivation of water oxidizing complex in Photosystem II membranes depleted of manganese and extrinsic proteins. I. Biochemical and kinetic characterization. Biochim Biophys Acta 890: 179–194

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: the early observations. Photosynth Res 76: 197–205

    Article  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815

    Article  Google Scholar 

  • Thornber JP (1975) Chlorophyll proteins-light harvesting and reaction center components of plants. Ann Rev Plant Physiol Plant Mol Biol 26: 127–158

    Article  CAS  Google Scholar 

  • Thornber JP, Ridley SM and Bailey JL (1965) The isolation and partial characteristics of Fraction I protein from spinach-beet chloroplasts. Biochem J 96: 29c–31c

    Google Scholar 

  • Thorne SW (1971) The greening of etiolated bean leaves. I. The initial photoconversion process. Biochim Biophys Acta 226: 113–127

    Article  PubMed  CAS  Google Scholar 

  • Thunberg T (1923) Ein Beitrag zur Theorie der Kohlensäureassimilation. Zeitschr F Physikal Chem 106: 305–312

    CAS  Google Scholar 

  • Timiriazeff CA (1868) A set-up for investigation of air-nutrition of leaves and application of artificial illumination to the studies of this type. Trudy I Meeting of the Russian naturalists and physicians. St. Petersburg, 1868, Botanical section, p 17 and 74–80 [in Russian]

    Google Scholar 

  • Timiriazeff CA (1874) Sur l’action de la lumiere dans la decomposition de l’acide carbonique par la granule de chlorophylle. International Botanical Congress, Firenze, Italy, May, pp 108–117

    Google Scholar 

  • Timiriazeff CA (1875) On the utilization of light by plants. Doctoral dissertation. The University of St. Petersburg, Russia [in Russian]

    Google Scholar 

  • Timiriazeff CA (1877) Sur la decomposition de l’acide carbonique dans le spectre solaire par le particles verte des végétaux. Compt Rend 84: 1236–1239

    Google Scholar 

  • Tolmach LJ (1951) Effect of triphosphopyridine nucleotide upon oxygen evolution and carbon dioxide fixation by illuminated chloroplasts. Nature 167: 946–948

    Article  PubMed  CAS  Google Scholar 

  • Trebst A (1975) Energy conservation in photosynthetic electron transport of chloroplasts. Ann Rev Plant Physiol 25: 423–458

    Article  Google Scholar 

  • Trown PW (1965) An improved method for the isolation of carboxydismutase: Probable identity with Fraction I protein and the protein moiety of protochlorophyll holochrome. Biochemistry 4: 908–918

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara T, Fukuyama K, Nakamura M, Katsube M, Tanaka N, Kakudo M, Wada K, Hase T and Matsubara H (1981) X-ray analysis of a [2Fe-2S] ferredoxin from Spirulina platensis. Main chain fold and location of side chains at 2.5Å. J Biochem Jpn 90: 1763–1773

    CAS  Google Scholar 

  • Tswett M (1906) Absorption Analyse und Chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. Ber Deut Bot Ges 24: 384–393

    CAS  Google Scholar 

  • van Ginkel G and Goedheer JHC (1991) Jan Bartolomeus Thomas (1907–1991). Photosynth Res 30: 65–69

    Article  Google Scholar 

  • Van Niel CB (1931) On the morphology and physiology of the purple and the green bacteria. Arch Mikrobiol 3: 1–12

    Article  Google Scholar 

  • Van Niel CB (1941) The bacterial photosyntheses and their importance for the general problem of photosynthesis. Adv Enzymol 1: 263–328

    Google Scholar 

  • Van Noort G and Wildman SG (1964) Enzymatic properties of Fraction-I protein isolated by a specific antibody. Biochim Biophys Acta 90: 309–317

    Google Scholar 

  • van Rensen JJS (2002) Role of bicarbonate at the acceptor side of Photosystem II. Photosynth Res 73: 185–192

    Article  PubMed  Google Scholar 

  • Vass I (2003) The history of photosynthetic thermoluminescence. Photosynth Res 76: 303–318

    Article  PubMed  CAS  Google Scholar 

  • Velthuys BR (1979) Electron flow through plastoquinone and cytochrome b 6 and f in chloroplasts. Proc Natl Acad Sci USA 76: 2765–2769

    Article  PubMed  CAS  Google Scholar 

  • Vermeglio A (2002) The two-electron gate in photosynthetic bacteria. Photosynth Res 73: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Vernon LP (2003) Photosynthesis and the Charles F. Kettering research laboratory. Photosynth Res 76: 379–388

    Article  PubMed  CAS  Google Scholar 

  • Vernon LP, Shaw ER, Ogawa T and Raveed D (1971) Structure of Photosystem I and Photosystem II of plant chloroplasts. Photochem Photobiol 14: 343–357

    CAS  Google Scholar 

  • Vinogradov AP and Teis RV (1941) Isotope composition of oxygen from different sources (oxygen from photosynthesis, air, CO2, H2O). Dokl Akad Nauk SSSR 33: 497–501

    Google Scholar 

  • Vinogradov AP and Teis RV (1947) Novel determination of the isotope composition of oxygen of photosynthesis. Dokl Akad Nauk SSSR 56: 57–58

    Google Scholar 

  • von Baeyer A (1864) Über die Wasserentziehung und ihre Bedeutung für das Pflanzenleben und die Gährung. Ber Deut Chem Ges 3: 63

    Google Scholar 

  • Vredenberg WJ (1982) In Memoriam: Professor Evert Christiaan Wassink (1905–1981). Am Soc Photobiol Newslett No. 56, April, 1982 (edited by Thomas P. Coohill)

    Google Scholar 

  • Vredenberg WJ, Amesz J and Duysens LNM (1965) Light-induced spectral shifts in bacteriochlorophyll and carotenoid absorption spectra. Biochem Biophys Res Commun 18: 435–439

    Article  PubMed  CAS  Google Scholar 

  • Walker DA (1992) Energy, Plants and Man (2nd edition). Oxygraphics, Brighton, UK (See Figure 3.8 in this book.)

    Google Scholar 

  • Walker DA (2002a) ‘And whose bright presence’ — an appreciation of Robert Hill and his reaction. Photosynth Res 73: 51–54

    Article  PubMed  CAS  Google Scholar 

  • Walker DA (2002b) The Z-scheme-down hill all the way. Trends Plant Sci 7: 183–185

    Article  PubMed  CAS  Google Scholar 

  • Walker DA (2003) Chloroplasts in envelopes: CO2 fixation by fully functional intact chloroplasts. Photosynth Res 76: 319–327

    Article  PubMed  CAS  Google Scholar 

  • Walker DA and Hill R (1967) The relation of oxygen evolution to carbon assimilation with isolated chloroplasts. Biochim Biophys Acta 131: 330–338

    Article  PubMed  CAS  Google Scholar 

  • Walker JE (1994) The regulation of catalysis in ATP synthase. Curr Opin Struct Biol 4: 912–918

    Article  PubMed  CAS  Google Scholar 

  • Warburg O and Negelein E (1922) Über den Energieumsatz bei der Kohlensäureassimilation. Zeit Physikal Chem 102: 235–266; Naturwissenschaften 10: 647–653

    Google Scholar 

  • Warburg O and Uyesugi T (1924) Über die Blackmansche Reaktion. Biochem Z 146: 486–492

    CAS  Google Scholar 

  • Wasielewski MR, Johnson DG, Seibert M and Govindjee (1989) Determination of the primary charge separation rate in isolated Photosystem II reaction centers with 500 femtosecond time resolution. Proc Natl Acad Sci USA 86: 542–548

    Article  Google Scholar 

  • Wassink EC and Kersten JAH (1945) Photosynthesis and fluorescence of the chlorophylls of diatoms. Enzymologia 11: 282–312

    CAS  Google Scholar 

  • Weissbach A, Smyrniotis PZ and Horecker BL (1954) Pentose phosphate and CO2 fixation with spinach extracts. J Am Chem Soc 76: 3611–3612

    Article  CAS  Google Scholar 

  • Weissbach A, Horecker BL and Hurwitz J (1956) The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J Biol Chem 218: 795–810

    PubMed  CAS  Google Scholar 

  • Whitmarsh J and Govindjee (1999) The photosynthetic process. In: Singhal GS, Renger G, Sopory SK, Irrgang K-D and Govindjee (eds), Concepts in Photobiology. Photosynthesis and Photomorphogenesis, pp 11–51. Narosa Publishing House, New Delhi, India/Kluwer Academic Publishers, Dordrecht, The Netherlands (also available at http://www.life.uiuc.edu/govindjee/paper.html)

    Google Scholar 

  • Wild A and Ball R (1997) Photosynthetic Unit and Photosystems. History of Research and Current View (Relationship of Structure and Function), pp 219. Backhuys Publishers, Leiden, The Netherlands

    Google Scholar 

  • Wildman SG (1998) Discovery of Rubisco. In: Kung SD and Yang SF (eds) Discoveries in Plant Biology. Chapter 12, pp 163–173. World Scientific Publishing, Singapore

    Google Scholar 

  • Wildman SG (2002) Along the trail from Fraction 1 protein to Rubisco (ribulose bisphosphate carboxylase-oxygenase). Photosynth Res 73: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Wildman SG, Hirsch AM, Kirchanski SJ and Spencer D (2004) Chloroplasts in living cells and the string-of-grana concept of chloroplast structure revisited. Photosynth Res 80: 345–352

    Article  PubMed  CAS  Google Scholar 

  • Willstätter R (1915) Chlorophyll. J Am Chem Soc 37: 323–345

    Google Scholar 

  • Willstätter R and Stoll A (1913) Untersuchungen über Chlorophyll. Justus Springer, Berlin (English translation by Schertz FM and Merz AR, Science Printing Press, Lancaster, Pennsylvania, 1928)

    Google Scholar 

  • Witt HT (1971) Coupling of quanta, electrons, field, ions, and phosphorylation in the functional membrane of photosynthesis. Results by pulse spectroscopic methods. Quart Rev Biophys 4: 365–477

    Article  CAS  Google Scholar 

  • Witt HT (2004) Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water-oxidizing photosynthesis. Photosynth Res 80: 85–107

    Article  CAS  Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961a) Experimental evidence for the mechanism of photosynthesis. Nature 191: 194–195

    Article  PubMed  CAS  Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961b) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192: 967–969

    Article  PubMed  CAS  Google Scholar 

  • Witt I, Witt HT, Gerken S, Saenger W, Decker J and Rogner N (1987) Crystallization of reaction center I of photosynthesis. FEBS Lett 221: 260–264

    Article  CAS  Google Scholar 

  • Wurmser R (1921) Recherches sur l’assimilation chlorophyllienne. Thèse de doctorat, Paris, France

    Google Scholar 

  • Wurmser R (1930) Oxydations et reductions. Presses Universitaires de France, Paris, France

    Google Scholar 

  • Wydrzynski TJ (2004) Early indications for manganese oxidation state changes during photosynthetic oxygen production: a personal account. Photosynth Res 80: 125–135

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T, Zumbulyadis N, Schmidt PG and Govindjee (1975) Water proton relaxation as a monitor of membrane-bound manganese in spinach chloroplasts. Biochim Biophys Acta 408: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T, Zumbulyadis N, Schmidt PG, Gutowsky HS and Govindjee (1976) Proton relaxation and charge accumulation during oxygen evolution in photosynthesis. Proc Natl Acad Sci USA 73: 1196–1198

    Article  PubMed  CAS  Google Scholar 

  • Yachandra VK, Sauer K and Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96: 2927–2950

    Article  PubMed  CAS  Google Scholar 

  • Yakushiji E (1935) Über das Vorkommen des Cytochroms in höheren Pflanzen und in Algen. Acta Phytochim (Tokyo) 8: 325

    CAS  Google Scholar 

  • Zhang H, Carrell CJ, Huang H, Sled V, Onishi T, Smith JL and Cramer WA (1996) Characterization and crystallization of the lumen side domain of the chloroplast Rieske iron sulfur protein. J Biol Chem 271: 31360–31366

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G, Bohnert HJ, Whitfield PR and Bottomley W (1982) Nucleotide sequence of the gene for the Mr32,000 thylakoid membrane protein from Spinacea oleracea and Nicotiana debnevi predicts a totally conserved translational product of Mr38,950. Proc Natl Acad Sci USA 79: 7699–7703

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memories of Martin Kamen (1920–2002) and William A. Arnold (1904–2001)

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Govindjee, Krogmann, D. (2005). Discoveries in oxygenic photosynthesis (1727–2003): a perspective. In: Govindjee, Beatty, J.T., Gest, H., Allen, J.F. (eds) Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration, vol 20. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3324-9_7

Download citation

Publish with us

Policies and ethics