Skip to main content

Signal Traitment and Virtual Images Production (2/2)

Visualization and Analysis of Molecular Scanner Peptide Mass Spectra. (Muller et al., 2002)

  • Chapter
  • 622 Accesses

Abstract

The molecular scanner combines protein separation using gel electrophoresis with peptide mass fingerprinting (PMF) techniques to identify proteins in a highly automated manner. Proteins separated in a 2-dimensional polyacrylamide gel (2D-PAGE) are digested ‘in parallel’ and transferred onto a membrane keeping their relative positions. The membrane is then sprayed with a matrix and inserted into a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer, which measures a peptide mass fingerprint at each site on the scanned grid. First, visualization of PMF data allows surveying all fingerprints at once and provides very useful information on the presence of chemical noise. Chemical noise is shown to be a potential source for erroneous identifications and is therefore purged from the mass fingerprints. Then, the correlation between neighboring spectra is used to recalibrate the peptide masses. Finally, a method that clusters peptide masses according to the similarity of the spatial distributions of their signal intensities is presented. This method allows discarding many of the false positives that usually go along with PMF identifications and allows identifying many weakly expressed proteins present in the gel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Bienvenut, W., Müller, M., Palagi, P., Gasteiger, E., Heller, M., Jung, E., et al. (2001). Proteomics and mass spectrometry: some aspects and recent developments. In J. Housby (Ed.), Mass spectrometry and genomic analysis (pp. 93–142). Amsterdam: Kluwer academic.

    Google Scholar 

  • Bienvenut, W., Sanchez, J., Karmime, A., Rouge, V., Rose, K., Binz, P., et al. (1999). Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal Chem, 71(21), 4800–4807.

    Article  PubMed  Google Scholar 

  • Binz, P., Muller, M., Walther, D., Bienvenut, W., Gras, R., Hoogland, C., et al. (1999). A molecular scanner to automate proteomic research and to display proteome images. Anal Chem, 71(21), 4981–4988.

    Article  PubMed  Google Scholar 

  • Bjellqvist, B., Ek, P., Righetti, P., Gianazza, E., Gorg, A., Westermeir, R., et al. (1982). J. Biochem. Biophys., 6, 317–339.

    Article  Google Scholar 

  • Christian, N., Arnold, R., & Reilly, J. (2000). Improved calibration of time-of-flight mass spectra by simplex optimization of electrostatic ion calculations. Anal. Chem., 72(14), 3327–3337.

    Article  PubMed  Google Scholar 

  • Duncan, M., Matanovic, G., & Cerpa-Poljak, A. (1993). Rapid Commun Mass Spectrom, 7, 1090–1094.

    Article  PubMed  Google Scholar 

  • Egelhofer, V., Bussov, K., Luebbert, C., Lehrach, H., & Nordhoff, E. (2000). Improvements in protein identification by MALDI-TOF MS peptide mapping. Anal. Chem., 72, 2741–2750.

    Article  PubMed  Google Scholar 

  • Eriksson, J., Chait, B., & Fenyo, D. (2000). A statistical basis for testing the significance of mass spectrometric protein identification results. Anal Chem, 72(5), 999–1005.

    Article  PubMed  Google Scholar 

  • Gobom, J., Kraeuter, K., Persson, R., Steen, H., Roepstorff, P., & Ekman, R. (2000). Detection and quantification of neurotensin in human brain tissue by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Anal. Chem., 72, 3320–3326.

    Article  PubMed  Google Scholar 

  • Godovac-Zimmermann, J., & Brown, L. (2001). Perspectives for mass spectrometry and functional proteomics. Mass Spectrom Rev., 20(1), 1–57.

    Article  PubMed  Google Scholar 

  • Gras, R., Muller, M., Gasteiger, E., Gay, S., Binz, P., Bienvenut, W., et al. (1999). Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection. Electrophoresis, 20(18), 3535–3550.

    Article  PubMed  Google Scholar 

  • Gusev, A., Wilkinson, W., Proctor, A., & Hercules, D. (1995). Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal. Chem, 67, 1034–1041.

    Article  Google Scholar 

  • Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., & Watanabe, C. (1993). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of the National Academy of Sciences of the United States of America, 90(11), 5011–5015.

    PubMed  Google Scholar 

  • Hoogland, C., Sanchez, J., Tonella, L., Binz, P., Bairoch, A., Hochstrasser, D., et al. (2000). 28(1), 286–288.

    Google Scholar 

  • James, P., Quadroni, M., Carafoli, E., & Gonnet, G. (1993). Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun, 195(1), 58–64.

    Article  PubMed  Google Scholar 

  • Juhasz, P., Vestal, M., & Martin, S. (1997). J Am Soc Mass Spectrom, 8, 209–217.

    Article  Google Scholar 

  • Karas, M., & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 60(20), 2299–2301.

    Article  PubMed  Google Scholar 

  • Keller, B., & Li, L. (2000). J Am Chem Soc, 11, 88–93.

    Google Scholar 

  • Kratzer, R., Eckerskorn, C., Karas, M., & Lottspeich, F. (1998). Suppression effects in enzymatic peptide ladder sequencing using UV-MALDI-MS. Electrophoresis, 19, 1910–1919.

    Article  PubMed  Google Scholar 

  • Land, C., & Kinsel, G. (2001). The mechanism of matrix to analyte proton transfer in clusters of 2,5-dihydroxybenzoic acid and the tripeptide VPL. J. Am. Soc. Mass Spectrom., 12, 726–731.

    Article  PubMed  Google Scholar 

  • Lopez, M. F. (2000). Better approach to finding the needle in a haystack: optimizing proteome analysis through automation. Electrophoresis, 21, 1082–1093.

    Article  PubMed  Google Scholar 

  • Mann, M., Höjrup, P., & Roepstorff, P. (1993). Biol. Mass Spectrum, 22, 338.

    Article  Google Scholar 

  • Muller, M., Gras, R., Appel, R. D., Bienvenut, W. V., & Hochstrasser, D. F. (2002). Visualization and analysis of molecular scanner peptide mass spectra. J Am Soc Mass Spectrom, 13(3), 221–231.

    Article  PubMed  Google Scholar 

  • Pacholski, M., & N, W. (1999). Chem. Rev., 99, 2977–3005.

    Article  PubMed  Google Scholar 

  • Pappin, D., Hojrup, P., & Bleasby, A. (1993). Rapid identification of proteins by petide mass fingerprint. Curr. Biol., 3(6), 327–332.

    Article  PubMed  Google Scholar 

  • Press, W., teukolsky, S., Vetterlin, W., & Flannery, B. (1995). Numerical recipes in C. Cambridge: University press.

    Google Scholar 

  • Stoeckli, M., Chaurand, P., Hallahan, D., & Caprioli, R. (2001). Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nature, 7, 493–496.

    Article  Google Scholar 

  • Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., & Yoshida, T. (1988). Rapid Commun. Mass Spectrom., 2, 151–153.

    Article  Google Scholar 

  • Toffoli, T., & Margolus, N. (1987). Cellular automata machines. Cambridge (MA): MIT press.

    Google Scholar 

  • Traini, M., Gooley, A. A., Ou, K., Wilkins, M. R., Tonella, L., Sanchez, J.-C., et al. (1998). Towards an automated approach for protein identification in proteome projects. Electrophoresis, 19, 1941–1949.

    Article  PubMed  Google Scholar 

  • Vestal, M., & Jushaz P. (1998). J Am Soc Mass Spectrom., 9, 892–911.

    Article  Google Scholar 

  • Yates, J. R., III, Speicher, S., Griffin, P. R., & Hunkapiller, T. (1993). Peptide mass maps: A highly informative approach to protein identification. Anal Biochem, 214, 397–408.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Muller, M., Gras, R., Appel, R.D., Bienvenut, W.V., Hochstrasser, D.F. (2005). Signal Traitment and Virtual Images Production (2/2). In: Bienvenut, W.V. (eds) Acceleration and Improvement of Protein Identification by Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3319-2_5

Download citation

Publish with us

Policies and ethics