Skip to main content
  • 1338 Accesses

Abstract

African trypanosomes are protozoan parasites, most species of which are transmitted by tsetse flies. They reside in the mammalian bloodstream and evade the immune system by periodically switching the major protein on their surface — a phenomenon called antigenic variation, mediated by gene rearrangements in the trypanosome genome. The trypanosomes eventually enter the central nervous system and cause a fatal disease, commonly called ngana in domestic cattle and sleeping sickness in humans. Two sub-species of Trypanosoma brucei infect humans (T. b. rhodesiense and T. b. gambiense) and one sub-species does not survive in humans (T. b. brucei) because it is lysed by the human-specific serum protein, apolipoprotein L-I. Wild animals in Africa have other (less well understood) molecular mechanisms of suppressing the number of African trypanosomes in the blood, and some indigenous breeds of African cattle also display a partial “trypanotolerance” whose genetic loci have recently been mapped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babour, A.G. & Restrepo, B.I. 2000. Antigenic variation in vector-borne pathogens. Emerging Infectious Diseases, 6: 449–457.

    Google Scholar 

  • Baltz, T., Baltz, D., Giroud, C. & Crockett, J. 1985. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO Journal, 4: 1273–1277.

    PubMed  CAS  ISI  Google Scholar 

  • Baltz, T., Giroud, C., Baltz, D., Roth, C., Raibaud, A. & Eisen, H. 1986. Stable expression of two variable surface glycoproteins by cloned Trypanosoma equiperdum. Nature, 319: 602–604.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Bellofatto, V. & Cross, G.A. 1989. Expression of a bacterial gene in a trypanosomatid protozoan. Science, 244: 1167–1169.

    PubMed  CAS  ISI  Google Scholar 

  • Berriman, M., Hall, N., Sheader, K., Bringaud, F., Tiwari, B., Isobe, T., Bowman, S., Corton, C., Clark, L., Cross, G.A., Hoek, M., Zanders, T., Berberof, M., Borst, P. & Rudenko, G. 2002. The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Molecular and Biochemical Parasitology, 122: 131–140.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Bitter, W., Gerrits, H., Kieft, R. & Borst, P. 1998. The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature, 391: 499–502.

    PubMed  CAS  ISI  Google Scholar 

  • Black, S.J., Sicard, E.L., Murphy, N. & Nolan, D. 2001. Innate and acquired control of trypanosome parasitaemia in Cape buffalo. International Journal of Parasitology, 31: 561–564.

    Article  Google Scholar 

  • Blum, M.L., Down, J.A., Gurnett, A.M., Carrington, M., Turner, M.J. & Wiley, D.C. 1993. A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature, 362: 603–609.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Borst, P. & Ulbert, S. 2001. Control of VSG gene expression sites. Molecular and Biochemical Parasitology, 114: 17–27.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Bridgen, P.J., Cross, G.A. & Bridgen, J. 1976. N-terminal amino acid sequences of variant-specific surface antigens from Trypanosoma brucei. Nature, 263: 613–614.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Carruthers, V.B. & Cross, G.A. 1992. High-efficiency clonal growth of bloodstream-and insect-form Trypanosoma brucei on agarose plates. Proceedings of the National Academy of Sciences, USA, 89: 8818–8821.

    CAS  Google Scholar 

  • Cross, G.A.M., Wirtz, L.E. & Navarro, M. 1998. Regulation of vsg expression site transcription and switching in Trypanosoma brucei. Molecular and Biochemical Parasitology, 91: 77–91.

    Article  PubMed  CAS  ISI  Google Scholar 

  • d’Ieteren, G.D., Authie, E., Wissocq, N. & Murray, M. 1998. Trypanotolerance, an option for sustainable livestock production in areas at risk from trypanosomosis. Revue scientifique et technique de L’Office International des Epizooties, 17: 154–175.

    CAS  Google Scholar 

  • Davies, K.P., Carruthers, V.B. & Cross, G.A. 1997. Manipulation of the vsg cotransposed region increases expression-site switching in Trypanosoma brucei. Molecular and Biochemical Parasitology, 86: 163–177.

    Article  PubMed  CAS  ISI  Google Scholar 

  • De Greef, C. & Hamers, R. 1994. The serum-resistance associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a VSG-like protein. Molecular and Biochemical Parasitology, 68: 277–284.

    PubMed  Google Scholar 

  • Donelson, J.E. 2003. Antigenic variation and the African trypanosome genome. Acta Tropica, 85: 391–404.

    Article  PubMed  CAS  ISI  Google Scholar 

  • El-Sayed, N.M., Ghedin, E., Song, J., MacLeod, A., Bringaud, F., Larkin, C., Wanless, D., Peterson, J., Hou, L., Taylor, S., Tweedie, A., Biteau, N., Khalak, H.G., Lin, X., Mason, T., Hannick, L., Caler, E., Blandin, G., Bartholomeu, D., Simpson, A.J., Kaul, S., Zhao, H., Pai, G., Van Aken, S., Utterback, T., Haas, B., Koo, H.L., Umayam, L., Suh, B., Gerrard, C., Leech, V., Qi, R., Zhou, S., Schwartz, D., Feldblyum, T., Salzberg, S., Tait, A., Turner, C.M., Ullu, E., White, O., Melville, S., Adams, M.D., Fraser, C.M. & Donelson, J.E. 2003. The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Research, 31: 4856–4863.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Esser, K.M. & Schoenbechler, M.J. 1985. Expression of two variant surface glycoproteins on individual African trypanosomes during antigen switching. Science, 229: 190–193.

    PubMed  CAS  ISI  Google Scholar 

  • Gerrits, H., Mußmann, R., Bitter, W., Kieft, R. & Borst, P. 2002. The physiological significance of transferrin receptor variations in Trypanosoma brucei. Molecular and Biochemical Parasitology, 119: 237–247.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Hager, K.M. & Hajduk, S.L. 1997. Mechanism of resistance of African trypanosomes to cytotoxic human HDL. Nature, 385: 823–826.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Hanotte, O., Ronin, Y., Agaba, M., Nilsson, P., Gelhaus, A., Horstmann, R., Sugimoto, Y., Kemp, S., Gibson, J., Korol, A., Soller, M. & Teal, A. 2003. Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N’Dama and susceptible East African Boran cattle. Proceedings of the National Academy of Sciences, USA, 100: 7443–7448.

    Article  CAS  Google Scholar 

  • Hide, G. 1999. History of sleeping sickness in East Africa. Clinical Microbiology Reviews, 2: 112–125.

    Google Scholar 

  • Iraqi, F., Clapcott, S.J., Kumari, P., Haley, C.S., Kemp, S.J. & Teale, A. 2000. Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mammalian Genome, 11: 645–648.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Jordt, T., Mahon, G.D., Touray, B.N., Ngulo, W.K., Morrison, W.I., Rawle, J. & Murray, M. 1986. Successful transfer of frozen N’Dama embryos from the Gambia to Kenya. Tropical Animal Health and Production, 18: 65–75.

    PubMed  CAS  ISI  Google Scholar 

  • LaCount, D.J., El-Sayed, N.M., Kaul, S., Wanless, D., Turner, C.M.R. & Donelson, J.E. 2001. Analysis of a donor gene region for a variant surface glycoprotein and its expression site in African trypanosomes. Nucleic Acids Research, 29: 2012–2019.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Lu, Y., Hall, T., Gay, L.S. & Donelson, J.E. 1993. Point mutations are associated with a gene duplication leading to the bloodstream re-expression of a trypanosome metacyclic VSG. Cell, 72: 397–406.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Melville, S.E., Leech, V., Gerrard, C.S., Tait, A. & Blackwell, J.M. 1998. The molecular karyotype of the megabase chromosomes of Trypanosoma brucei and the assignment of chromosome markers. Molecular and Biochemical Parasitology, 94: 155–173.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Muñoz-Jordń, J.L., Davies, K.P. & Cross, G.A.M. 1996. Stable expression of mosaic coats of variant surface glycoproteins in Trypanosoma brucei. Science, 272: 1791–1794.

    Google Scholar 

  • Muranjan, M., Wang, Q., Li, Y.L., Hamilton, E., Otieno-Omondi, F.P., Wang, J., Van Praagh, A., Grootenhuis, J.G. & Black, S.J. 1997. The trypanocidal Cape buffalo serum protein is xanthine oxidase. Infection and Immunity, 65: 3806–3814.

    PubMed  CAS  ISI  Google Scholar 

  • Naessens, J., Teale, A.J. & Sileghem, M. 2002. Identification of mechanisms of natural resistance to African trypanosomiasis in cattle. Veterinary Immunology and Immunopathology, 87: 187–194.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Opperdoes, F.R. & Michels, P.A. 1993. The glycosomes of the Kinetoplastida. Biochimie, 75: 231–234.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pays, E. & Nolan, D.P. 1998. Expression and function of surface proteins in Trypanosoma brucei. Molecular and Biochemical Parasitology, 91: 3–36.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pays, E., Lips, S., Nolan, D., Vanhamme, L. & Perez-Morga, D. 2001. The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts. Molecular and Biochemical Parasitology, 114: 1–16.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Reduth, D., Grootenhuis, J.G., Olubayo, R.O., Muranjan, M., Otieno-Omondi, F.P., Morgan, G.A., Brun, R., Williams D.J.L. & Black, S.J. 1994. African buffalo serum contains novel trypanocidal protein. Journal of Eukaryotic Microbiology, 41: 95–103.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Rifkin, M.R. 1978. Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proceedings of the National Academy of Sciences, USA, 75: 3450–3454.

    CAS  Google Scholar 

  • Rifkin, M.R., De Greef, C., Jiwa, A., Landsberger, F.R. & Shapiro, S.Z. 1994. Human serum-sensitive Trypanosoma brucei rhodesiense: a comparison with serologically identical human serum-resistant clones. Molecular and Biochemical Parasitology, 66: 211–220.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Ross, R. & Thompson, D. 1910. A case of sleeping sickness studied by precise enumerative methods: regular periodic increase of the parasites observed. Proceedings of the Royal Society of London, Series B, 82: 411–415.

    Google Scholar 

  • Schmidt, A. & Krauth-Siegel, R.L. 2002. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Current Topics in Medical Chemistry, 2: 1239–1259.

    CAS  Google Scholar 

  • Thon, G., Baltz, T. & Eisen, H. 1989. Antigenic diversity by the recombination of pseudogenes. Genes Development, 3: 1247–1254.

    PubMed  CAS  ISI  Google Scholar 

  • Turner, C.M. 1997. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiology Letters, 153: 227–231.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Turner, C.M. & Barry, J.D. 1989. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology, 99: 67–75.

    Article  PubMed  ISI  Google Scholar 

  • Vanhamme, L., Paturiaux-Hanocq, F., Poelvoorde, P., Nolan, D.P., Lins, L., Van Den Abbeele, J., Pays, A., Tebabi, P., Van Xong, H., Jacquet, A., Moguilevsky, N., Dieu, M., Kane, J.P., De Baetselier, P., Brasseur, R. & Pays, E. 2003. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature, 422: 83–87.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wang, J., Bohme, U. & Cross, G.A. 2003. Structural features affecting variant surface glycoprotein expression in Trypanosoma brucei. Molecular and Biochemical Parasitology, 128: 135–145.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wang, J., Van Praagh, A., Hamilton, E., Wang, Q., Zou, B., Muranjan, M., Murphy, N.B. & Black, S.J. 2002. Serum xanthine oxidase: origin, regulation, and contribution to control of trypanosome parasitemia. Antioxidants Redox Signaling, 4: 161–178.

    PubMed  CAS  ISI  Google Scholar 

  • Xong, H.V., Vanhamme, L., Chamekh, M., Chimfwembe, C.E., Van Den Abbeele, J., Pays, A., Van Meirvenne, N., Hamers, R., De Baetselier, P. & Pays, E. 1998. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell, 95: 839–846.

    PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IAEA

About this paper

Cite this paper

Donelson, J.E. (2005). The Molecular Basis of Livestock Disease as Illustrated by African Trypanosomiasis. In: Makkar, H.P., Viljoen, G.J. (eds) Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3312-5_21

Download citation

Publish with us

Policies and ethics