Advertisement

Bifurcation and Chaos in Mechanical Applications: A Dynamical Systems Approach to Their Control

  • Stefano Lenci
  • Giuseppe Rega
Conference paper
  • 1.5k Downloads
Part of the Solid Mechanics and its Applications book series (SMIA, volume 122)

Abstract

This work reviews in an unified context some previous independently developed works by the authors related to a method for controlling nonlinear dynamics and chaos in mechanical oscillators based on optimal elimination of homo/heteroclinic bifurcations.

Key words

Homo/heteroclinic bifurcations chaos optimal control mechanical oscillators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Lenci and G. Rega, “Controlling nonlinear dynamics in a two-well impact system. Parts I & II,” Int. J. Bif Chaos, 8, 2387–2424, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Lenci and G. Rega, “Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator,” J. Vibr Control, 9, 281–316, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Lenci and G. Rega, “Optimal numerical control of single-well to cross-well chaos transition in mechanical systems,” Chaos Sol. & Fract., 15, 173–186, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Lenci and G. Rega, “Optimal control of nonregular dynamics in a Duffing oscillator,” Nonlin. Dynam., 33, 71–86, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Lenci and G. Rega, “Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks,” in press on Int. J. Bifur Chaos, 2003.Google Scholar
  6. [6]
    R. Lima and M. Pettini, “Suppression of chaos by resonant parametric perturbations,” Phys. Rev. A, 41, 726–733, 1990.MathSciNetCrossRefGoogle Scholar
  7. [7]
    E. Ott, C. Grebogi and J.A. Yorke, “Controlling chaos,” Phys. Rev. Lett. E, 64, 1196–1199, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    K. Pyragas, “Continuous control of chaos by self-controlling feedback,” Phys. Letters A, 170, 421–428, 1992.CrossRefGoogle Scholar
  9. [9]
    J.M.T. Thompson, “Chaotic phenomena triggering the escape from a potential well,” Proc. R. Soc. London A, 421, 195–225, 1989.zbMATHCrossRefGoogle Scholar
  10. [10]
    J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and Chaos, John Wiley, Chichester, Second Edition, 2002.zbMATHGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Stefano Lenci
    • 1
  • Giuseppe Rega
    • 2
  1. 1.Istituto di Scienza e Tecnica delle CostruzioniUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Dipartimento di Ingegneria Strutturale e GeotecnicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations