Advertisement

Vertical Dynamics of Riding Cars under Stochastic and Harmonic Base Excitations

  • Walter V. Wedig
Conference paper
Part of the Solid Mechanics and its Applications book series (SMIA, volume 122)

Abstract

Cars riding on rough road surfaces possess critical speeds for which the vertical car vibrations become resonant. The paper investigates these effects in case of harmonic and stochastic base excitations. The investigations are extended to nonlinear dynamics to calculate Lyapunov exponents and rotation numbers for quarter car models with bilinear damping characteristics. In the nonlinear case there are critical parameter values of the wheel suspension where stationary car vibrations bifurcate into chaos and exponential growth behavior.

Key words

Vertical car dynamics resonant car speeds bilinear damping Lyapunov exponents chaos and exponential growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Ammon, Modellbildung und Systementwicklung in der Fahrzeugdynamik, B.G. Teubner, Stuttgart, 1997.Google Scholar
  2. [2]
    W. V. Wedig and U. von Wagner, “Stochastic car vibrations with strong nonlinearities,” ASME 2001 Design Engineering Technical Conferences, September 9–12, Pittsburgh, PA, VIB-21605, pp. 1–7, 2001.Google Scholar
  3. [3]
    W. Wedig, “Dynamics of cars driving on stochastic roads,” (Proceedings of the fourth International Conference on Computational Stochastic Mechanics, Corfu, Greece, June 2002). In: Computational Stochastic Mechanics ed. by P.D. Spanos & G. Deodatis, Millpress, Rotterdam, pp. 647–654, 2003.Google Scholar
  4. [4]
    K. Popp and W. Schiehlen, Fahrdynamik, B.G. Teubner, Stuttgart, 1993.Google Scholar
  5. [5]
    J.D. Robson and C.J. Dodds, “Stochastic Road Inputs and Vehicle Response,” Vehicle System Dynamics 5, pp.1–13, 1975/76.Google Scholar
  6. [6]
    W. Wedig, “Characteristic Numbers — Vertical Dynamics of Cars Riding on Roads,” 6eme Congres de Mecanique, Mecanique des Solides, Tome I, Tanger, Maroc. Universite Abdelmalek Essaadi, Societe Marocaine des Sciences Mecanique, pp. 44–45, Avril 2003.Google Scholar
  7. [7]
    W. Hahn, Stability of Motion, Springer-Verlag, Berlin, 1967.Google Scholar
  8. [8]
    H. Hetzler, Stabilität eines nichtlinearen Schwingungssystems unter harmonischer und stochastischer Anregung. Diplomarbeit am Institut für Technische Mechanik der Universität Karlsruhe, Februar 2003.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Walter V. Wedig
    • 1
  1. 1.Institut für Technische MechanikUniversität Karlsruhe (TH)Germany

Personalised recommendations