Chaotic Clocks: A Paradigm for the Evolution of Noise in Machines

  • Francis C. Moon
Conference paper
Part of the Solid Mechanics and its Applications book series (SMIA, volume 122)


This paper addresses two problems in the dynamics of machines; the nature of noise in machines and the evolution of noisy dynamics over several generations of machine design. To present a concrete example we examine the dynamics of clock escapements from experimental, historical and analytical points of view. This model is shown to exhibit a strange attractor in the structural vibration of the clock. Finally we introduce a theory and mathematical model for the evolution of noise in machine dynamics over several generations of design.

Key words

Noise machine dynamics clocks chaos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    H. G. Conway, “Origins of mechanical servo mechanisms”, The Newcomen Society, Vol. XXIX, 1953–54, 1954–55.Google Scholar
  2. [2]
    F. C. Moon, Chaotic and Fractal Dynamics, J. Wiley, New York, 1992.Google Scholar
  3. [3]
    F. Reuleaux, The Constructor, 4th Edition, Translated by H. Suplee, 1893.Google Scholar
  4. [4]
    C. Huygens, Horologium, 1658.Google Scholar
  5. [5]
    D. Sobel and W. J. H. Andrewes, The Illustrated Longitude, Walker and Company, N.Y, 1998.Google Scholar
  6. [6]
    G. B. Airy, (1826) “On the disturbances of pendulums and balances and the theory of escapements”, Trans. Cambridge Phil. Soc. Vol III Part I, 105–128, P1. 2, 1830.Google Scholar
  7. [7]
    J. M. Bloxam, “On the mathematical theory and practical defects of clock escapements, with a description of a new escapement; and some observations for astronomical and scientific purposes”, Memoirs of the Royal Astronomical Society, Vol. XXII, 103–150, 1854.Google Scholar
  8. [8]
    E. B. Denison, (a.k.a. Lord Grimthorpe), A Rudimentary Treatise on Clocks and Watches and Bells, 1868.Google Scholar
  9. [9]
    A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators, Pergamon Press, Oxford. Dover Publ., 1987.Google Scholar
  10. [10]
    H. Kauderer, Nichtlineare Mechanik, Springer-Verlag, Berlin. Second part, Section 4, pp. 415–423, 1958.zbMATHGoogle Scholar
  11. [11]
    M. Kesteven, “On the mathematical theory of clocks”, Am. J. Phys. 46(2), pp 125–129, 1978.MathSciNetCrossRefGoogle Scholar
  12. [12]
    A. M. Lepschy, G. A. Mian and U. Viaro, “Feedback control in ancient water and mechanical clocks”, IEEE Trans. Edu., Vol. 35, No. 1, pp. 3–10, 1992.CrossRefGoogle Scholar
  13. [13]
    D. Bernstein, Escapements, Governors, Ailerons, Gyros, and Amplifiers: Feedback Control and the History of Technology, Michigan St. Univ. Report, 2000.Google Scholar
  14. [14]
    A.V. Roup, D. S. Bernstein, S. G. Nersesov, W. M. Haddad and V. Chellaboina, Limit Cycle Analysis of the Verge and Foliot Clock Escapement Using Impulsive Differential Equations and Poincaré Maps, Michigan St. Univ. Report, 2001.Google Scholar
  15. [15]
    F. C. Moon, “Franz Reuleaux; Contributions to 19th century kinematics and theory of machines”, Applied Mechanics Reviews, Vol. 56, No. 2, pp. 261–285, 2003.CrossRefGoogle Scholar
  16. [16]
    E. Bruton, The Longcase Clock, F.A. Praeger, N.Y., 1968.Google Scholar
  17. [17]
    E. Buckingham, Analytical Mechanics of Gears, 1949.Google Scholar
  18. [18]
    Y-H. Pao, D-C. Keh and S. Howard, “Dynamic response and wave propagation in plane trusses and frames”, AIAA J. Vol. 37, No. 5, pp. 594–603, 1998.CrossRefGoogle Scholar
  19. [19]
    E. J. Haug and J. S. Arora, Applied Optimal Design, J. Wiley, N.Y.Google Scholar
  20. [20]
    A. Neyfeh and B. Balachandran, Applied Nonlinear Dynamics, J. Wiley, N.Y., 1995.Google Scholar
  21. [21]
    R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd Edition, Addison-Wesley, Reading, Mass., 1989.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Francis C. Moon
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations