Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F. 2003. Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci USA 100:14223–8

    PubMed  CAS  Google Scholar 

  2. Gorman OT, Bean WJ, Webster RG. 1992. Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Curr Top Microbiol Immunol 176:75–97

    PubMed  CAS  Google Scholar 

  3. Klenerman P, Meier UC, Phillips RE, McMichael AJ. 1995. The effects of natural altered peptide ligands on the whole blood cytotoxic T lymphocyte response to human immunodeficiency virus. Eur J Immunol 25:1927–31

    PubMed  CAS  Google Scholar 

  4. Liston A, McColl S. 2003. Subversion of the chemokine world by microbial pathogens. Bioessays 25:478–88

    PubMed  CAS  Google Scholar 

  5. Vossen MT, Westerhout EM, Soderberg-Naucler C, Wiertz EJ. 2002. Viral immune evasion: a masterpiece of evolution. Immunogenetics 54:527–42

    PubMed  CAS  Google Scholar 

  6. Favoreel HW, Van de Walle GR, Nauwynck HJ, Pensaert MB. 2003. Virus complement evasion strategies. J Gen Virol 84:1–15

    PubMed  CAS  Google Scholar 

  7. Alcami A, Koszinowski UH. 2000. Viral mechanisms of immune evasion. Trends Microbiol 8:410–8

    PubMed  CAS  Google Scholar 

  8. Benedict CA, Norris PS, Ware CF. 2002. To kill or be killed: viral evasion of apoptosis. Nat Immunol 3:1013–8

    PubMed  CAS  Google Scholar 

  9. Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A, Mengede E, Kloetzel PM, Neefjes J, Koszinowski U, Melief C. 1996. A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5:115–24

    PubMed  CAS  Google Scholar 

  10. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG. 1997. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–21

    PubMed  CAS  Google Scholar 

  11. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG. 1995. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–8

    PubMed  CAS  Google Scholar 

  12. Sharipo A, Imreh M, Leonchiks A, Branden C, Masucci MG. 2001. cis-Inhibition of proteasomal degradation by viral repeats: impact of length and amino acid composition. FEBS Lett 499:137–42

    PubMed  CAS  Google Scholar 

  13. Gilbert MJ, Riddell SR, Plachter B, Greenberg PD. 1996. Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 383:720–2

    PubMed  CAS  Google Scholar 

  14. Burgert HG, Kvist S. 1985. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41:987–97

    PubMed  CAS  Google Scholar 

  15. Burgert HG, Maryanski JL, Kvist S. 1987. “E3/19K” protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc Natl Acad Sci USA 84:1356–60

    PubMed  CAS  Google Scholar 

  16. Burgert HG, Kvist S. 1987. The E3/19K protein of adenovirus type 2 binds to the domains of histocompatibility antigens required for CTL recognition. Embo J 6:2019–26

    PubMed  CAS  Google Scholar 

  17. Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D. 1995. Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–5

    PubMed  CAS  Google Scholar 

  18. Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H, Yang Y, Peterson PA, Fruh K, Tampe R. 1996. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. Embo J 15:3247–55

    PubMed  CAS  Google Scholar 

  19. Tomazin R, Hill AB, Jugovic P, York I, van Endert P, Ploegh HL, Andrews DW, Johnson DC. 1996. Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. Embo J 15:3256–66

    PubMed  CAS  Google Scholar 

  20. York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC. 1994. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77:525–35

    PubMed  CAS  Google Scholar 

  21. Hudson AW, Blom D, Howley PM, Ploegh HL. 2003. The ER-lumenal domain of the HHV-7 immunoevasin U21 directs class I MHC molecules to lysosomes. Traffic 4:824–37

    PubMed  CAS  Google Scholar 

  22. Hudson AW, Howley PM, Ploegh HL. 2001. A human herpesvirus 7 glycoprotein, U21, diverts major histocompatibility complex class I molecules to lysosomes. J Virol 75:12347–58

    PubMed  CAS  Google Scholar 

  23. Ishido S, Wang C, Lee BS, Cohen GB, Jung JU. 2000. Downregulation of major histocompatibility complex class I molecules by Kaposi’s sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74:5300–9

    PubMed  CAS  Google Scholar 

  24. Coscoy L, Ganem D. 2000. Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their f endocytosis. Proc Natl Acad Sci USA 97:8051–6

    PubMed  CAS  Google Scholar 

  25. Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous R, Heard JM, Schwartz O. 1998. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8:483–95

    PubMed  Google Scholar 

  26. Piguet V, Wan L, Borel C, Mangasarian A, Demaurex N, Thomas G, Trono D. 2000. HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I major histocompatibility complexes. Nat Cell Biol 2:163–7

    PubMed  CAS  Google Scholar 

  27. Beersma MF, Bijlmakers MJ, Ploegh HL. 1993. Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I H chains. J Immunol 151:4455–64

    PubMed  CAS  Google Scholar 

  28. Yamashita Y, Shimokata K, Saga S, Mizuno S, Tsurumi T, Nishiyama Y. 1994. Rapid degradation of the heavy chain of class I major histocompatibility complex antigens in a the endoplasmic reticulum of human cytomegalovirus-infected cells. J Virol 68:7933–43

    PubMed  CAS  Google Scholar 

  29. Jones TR, Hanson LK, Sun L, Slater JS, Stenberg RM, Campbell AE. 1995. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol 69:4830–41

    PubMed  CAS  Google Scholar 

  30. Ziegler H, Muranyi W, Burgert HG, Kremmer E, Koszinowski UH. 2000. The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. Embo J 19:870–81

    PubMed  CAS  Google Scholar 

  31. Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH. 1997. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66

    PubMed  CAS  Google Scholar 

  32. Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH. 1999. A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. Embo J 18:1081–91

    PubMed  CAS  Google Scholar 

  33. Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Campbell AE, Koszinowski UH, Hill AB, Ploegh HL. 1997. A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. Embo J 16:685–94

    PubMed  CAS  Google Scholar 

  34. Kavanagh DG, Koszinowski UH, Hill AB. 2001. The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J Immunol 167:3894–902

    PubMed  CAS  Google Scholar 

  35. Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB. 2001. The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 194:967–78

    PubMed  CAS  Google Scholar 

  36. Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH. 2002. Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–16

    PubMed  CAS  Google Scholar 

  37. Tirabassi RS, Ploegh HL. 2002. The human cytomegalovirus US8 glycoprotein binds to major histocompatibility complex class I products. J Virol 76:6832–5

    PubMed  CAS  Google Scholar 

  38. Furman MH, Dey N, Tortorella D, Ploegh HL. 2002. The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J Virol 76:11753–6

    PubMed  CAS  Google Scholar 

  39. Hengel H, Koopmann JO, Flohr T, Muranyi W, Goulmy E, Hammerling GJ, Koszinowski UH, Momburg F. 1997. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6:623–32

    PubMed  CAS  Google Scholar 

  40. Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJ, Ploegh HL, Peterson PA, Yang Y, Fruh K. 1997. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6:613–21

    PubMed  CAS  Google Scholar 

  41. Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P. 1997. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci USA 94:6904–9

    PubMed  CAS  Google Scholar 

  42. Hewitt EW, Gupta SS, Lehner PJ. 2001. The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. Embo J 20:387–96

    PubMed  CAS  Google Scholar 

  43. Kyritsis C, Gorbulev S, Hutschenreiter S, Pawlitschko K, Abele R, Tampe R. 2001. Molecular mechanism and structural aspects of transporter associated with antigen processing inhibition by the cytomegalovirus protein US6. J Biol Chem 276:48031–9

    PubMed  CAS  Google Scholar 

  44. Ulbrecht M, Hofmeister V, Yuksekdag G, Ellwart JW, Hengel H, Momburg F, Martinozzi S, Reboul M, Pla M, Weiss EH. 2003. HCMV glycoprotein US6 mediated inhibition of TAP does not affect HLA-E dependent protection of K-562 cells from NK cell lysis. Hum Immunol 64:231–7

    PubMed  CAS  Google Scholar 

  45. Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. 1996. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–79.

    PubMed  CAS  Google Scholar 

  46. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL. 1996. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–8.

    PubMed  CAS  Google Scholar 

  47. Story CM, Furman MH, Ploegh HL. 1999. The cytosolic tail of class I MHC heavy chain is required for its dislocation by the human cytomegalovirus US2 and US11 gene products. Proc Natl Acad Sci USA 96:8516–21

    PubMed  CAS  Google Scholar 

  48. Gewurz BE, Wang EW, Tortorella D, Schust DJ, Ploegh HL. 2001. Human cytomegalovirus US2 endoplasmic reticulum-lumenal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J Virol 75:5197–204

    PubMed  CAS  Google Scholar 

  49. Barel MT, Ressing M, Pizzato N, van Leeuwen D, Le Bouteiller P, Lenfant F, Wiertz EJ. 2003. Human cytomegalovirus-encoded US2 differentially affects surface expression of MHC class I locus products and targets membrane-bound, but not soluble HLA-G1 for degradation. J Immunol 171:6757–65

    PubMed  CAS  Google Scholar 

  50. Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL, Wiley DC. 2001. Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci USA 98:6794–9

    PubMed  CAS  Google Scholar 

  51. Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL. 2001. Virus subversion of immunity: a structural perspective. Curr Opin Immunol 13:442–50

    PubMed  CAS  Google Scholar 

  52. Blom D, Hirsch C, Stern P, Tortorella D, Ploegh HL. 2004. A glycosylated type I a membrane protein becomes cytosolic when peptide: N-glycanase is compromised. Embo J 23:650–8

    PubMed  CAS  Google Scholar 

  53. Lilley BN, Tortorella D, Ploegh HL. 2003. Dislocation of a type I membrane protein requires interactions between membrane-spanning segments within the lipid bilayer. Mol Biol Cell 14:3690–8

    PubMed  CAS  Google Scholar 

  54. Lilley BN, Ploegh HL. 2004. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–40

    PubMed  CAS  Google Scholar 

  55. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. 2004. A membrane protein complex a mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–7

    PubMed  CAS  Google Scholar 

  56. Ahn K, Angulo A, Ghazal P, Peterson PA, Yang Y, Fruh K. 1996. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci USA 93:10990–5

    PubMed  CAS  Google Scholar 

  57. Jones TR, Wiertz EJ, Sun L, Fish KN, Nelson JA, Ploegh HL. 1996. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci USA 93:11327–33

    PubMed  CAS  Google Scholar 

  58. Lee S, Yoon J, Park B, Jun Y, Jin M, Sung HC, Kim IH, Kang S, Choi EJ, Ahn BY, Ahn K. 2000. Structural and functional dissection of human cytomegalovirus US3 in binding major histocompatibility complex class I molecules. J Virol 74:11262–9

    PubMed  CAS  Google Scholar 

  59. Zhao Y, Biegalke BJ. 2003. Functional analysis of the human cytomegalovirus immune evasion protein, pUS3(22kDa). Virology 315:353–61

    PubMed  CAS  Google Scholar 

  60. Lee S, Park B, Ahn K. 2003. Determinant for endoplasmic reticulum retention in the luminal domain of the human cytomegalovirus US3 glycoprotein. J Virol 77:2147–56

    PubMed  CAS  Google Scholar 

  61. Gruhler A, Peterson PA, Fruh K. 2000. Human cytomegalovirus immediate early glycoprotein US3 retains MHC class I molecules by transient association. Traffic 1:318–25

    PubMed  CAS  Google Scholar 

  62. Misaghi S, Sun ZY, Stern P, Gaudet R, Wagner G, Ploegh H. 2004. Structural and functional analysis of human cytomegalovirus US3 protein. J Virol 78:413–23

    PubMed  CAS  Google Scholar 

  63. Park B, Kim Y, Shin J, Lee S, Cho K, Fruh K, Ahn K. 2004. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20:71–85

    PubMed  CAS  Google Scholar 

  64. Bennett EM, Bennink JR, Yewdell JW, Brodsky FM. 1999. Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression. J Immunol 162:5049–52

    PubMed  CAS  Google Scholar 

  65. Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo G, Schwartz O, Benaroch P. 2001. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci USA 98:12144–9

    PubMed  CAS  Google Scholar 

  66. Schindler M, Wurfl S, Benaroch P, Greenough TC, Daniels R, Easterbrook P, Brenner M, Munch J, Kirchhoff F. 2003. Down-modulation of mature major histocompatibility complex class II and up-regulation of invariant chain cell surface expression are well-conserved functions of human and simian immunodeficiency virus nef alleles. J Virol 77:10548–56

    PubMed  CAS  Google Scholar 

  67. Zhang B, Li P, Wang E, Brahmi Z, Dunn KW, Blum JS, Roman A. 2003. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-gamma. Virology 310:100–8

    PubMed  CAS  Google Scholar 

  68. Buchmeier NA, Cooper NR. 1989. Suppression of monocyte functions by human cytomegalovirus. Immunology 66:278–83

    PubMed  CAS  Google Scholar 

  69. Ng-Bautista CL, Sedmak DD. 1995. Cytomegalovirus infection is associated with absence of alveolar epithelial cell HLA class II antigen expression. J Infect Dis 171:39–44

    PubMed  CAS  Google Scholar 

  70. Sedmak DD, Guglielmo AM, Knight DA, Birmingham DJ, Huang EH, Waldman WJ. 1994. Cytomegalovirus inhibits major histocompatibility class II expression on infected endothelial cells. Am J Pathol 144:683–92

    PubMed  CAS  Google Scholar 

  71. Heise MT, Virgin HWt. 1995. The T-cell-independent role of gamma interferon and tumor necrosis factor alpha in macrophage activation during murine cytomegalovirus and herpes simplex virus infections. J Virol 69:904–9

    PubMed  CAS  Google Scholar 

  72. Heise MT, Connick M, Virgin HWt. 1998. Murine cytomegalovirus inhibits interferon gamma-induced antigen presentation to CD4 T cells by macrophages via regulation of expression of major histocompatibility complex class II-associated genes. J Exp Med 187:1037–46

    PubMed  CAS  Google Scholar 

  73. Miller DM, Rahill BM, Boss JM, Lairmore MD, Durbin JE, Waldman JW, Sedmak DD. 1998. Human cytomegalovirus inhibits major histocompatibility complex class II a expression by disruption of the Jak/Stat pathway. J Exp Med 187:675–83

    PubMed  CAS  Google Scholar 

  74. Redpath S, Angulo A, Gascoigne NR, Ghazal P. 1999. Murine cytomegalovirus infection down-regulates MHC class II expression on macrophages by induction of IL-10. J Immunol 162:6701–7

    PubMed  CAS  Google Scholar 

  75. Tomazin R, Boname J, Hegde NR, Lewinsohn DM, Altschuler Y, Jones TR, Cresswell P, Nelson JA, Riddell SR, Johnson DC. 1999. Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat Med 5:1039–43

    PubMed  CAS  Google Scholar 

  76. Hegde NR, Tomazin RA, Wisner TW, Dunn C, Boname JM, Lewinsohn DM, Johnson DC. 2002. Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J Virol 76:10929–41

    PubMed  CAS  Google Scholar 

  77. Chevalier MS, Johnson DC. 2003. Human cytomegalovirus US3 chimeras containing US2 cytosolic residues acquire major histocompatibility class I and II protein degradation properties. J Virol 77:4731–8

    PubMed  CAS  Google Scholar 

  78. Ravetch JV, Lanier LL. 2000. Immune inhibitory receptors. Science 290:84–9

    PubMed  CAS  Google Scholar 

  79. Ljunggren HG, Karre K. 1990. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–44

    PubMed  CAS  Google Scholar 

  80. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    PubMed  CAS  Google Scholar 

  81. Bukowski JF, Warner JF, Dennert G, Welsh RM. 1985. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med 161:40–52

    PubMed  CAS  Google Scholar 

  82. Welsh RM, Brubaker JO, Vargas-Cortes M, O’Donnell CL. 1991. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J Exp Med 173:1053–63

    PubMed  CAS  Google Scholar 

  83. Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, Shellam GR. 1992. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 149:581–9

    PubMed  CAS  Google Scholar 

  84. Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM. 2001. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–5

    PubMed  CAS  Google Scholar 

  85. Brown MG, Dokun AO, Heusel JW, Smith HR, Beckman DL, Blattenberger EA, Dubbelde CE, Stone LR, Scalzo AA, Yokoyama WM. 2001. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292:934–7

    PubMed  CAS  Google Scholar 

  86. Yokoyama WM, Plougastel BF. 2003. Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 3:304–16

    PubMed  CAS  Google Scholar 

  87. Lanier LL, Bakker AB. 2000. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol Today 21:611–4

    PubMed  CAS  Google Scholar 

  88. Sjolin H, Tomasello E, Mousavi-Jazi M, Bartolazzi A, Karre K, Vivier E, Cerboni C. 2002. Pivotal role of KARAP/DAP12 adaptor molecule in the natural killer cell-mediated resistance to murine cytomegalovirus infection. J Exp Med 195:825–34

    PubMed  CAS  Google Scholar 

  89. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV, Iizuka K, Furukawa H, Beckman DL, Pingel JT, Scalzo AA, Fremont DH, Yokoyama WM. 2002. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99:8826–31

    PubMed  CAS  Google Scholar 

  90. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. 2002. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–6

    PubMed  CAS  Google Scholar 

  91. Bubi I, Wagner M, Krmpoti A, Saulig T, Kim S, Yokoyama WM, Jonji S, Koszinowski UH. 2004. Gain of virulence caused by loss of a gene in murine cytomegalovirus. J Virol 78:7536–44

    Google Scholar 

  92. Voigt V, Forbes CA, Tonkin JN, Degli-Esposti MA, Smith HR, Yokoyama WM, Scalzo AA. 2003. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci USA 100:13483–8

    PubMed  CAS  Google Scholar 

  93. French AR, Pingel JT, Wagner M, Bubic I, Yang L, Kim S, Koszinowski U, Jonjic S, Yokoyama WM. 2004. Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20:747–56

    PubMed  CAS  Google Scholar 

  94. Chapman TL, Bjorkman PJ. 1998. Characterization of a murine cytomegalovirus class I major histocompatibility complex (MHC) homolog: comparison to MHC molecules and to the human cytomegalovirus MHC homolog. J Virol 72:460–6

    PubMed  CAS  Google Scholar 

  95. Farrell HE, Vally H, Lynch DM, Fleming P, Shellam GR, Scalzo AA, Davis-Poynter NJ. 1997. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386:510–4

    PubMed  CAS  Google Scholar 

  96. Beck S, Barrell BG. 1988. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature 331:269–72

    PubMed  CAS  Google Scholar 

  97. Cosman D, Fanger N, Borges L, Kubin M, Chin W, Peterson L, Hsu ML. 1997. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7:273–82

    PubMed  CAS  Google Scholar 

  98. Park B, Oh H, Lee S, Song Y, Shin J, Sung YC, Hwang SY, Ahn K. 2002. The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. J Immunol 168:3464–9

    PubMed  CAS  Google Scholar 

  99. Reyburn HT, Mandelboim O, Vales-Gomez M, Davis DM, Pazmany L, Strominger JL. 1997. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386:514–7

    PubMed  CAS  Google Scholar 

  100. Leong CC, Chapman TL, Bjorkman PJ, Formankova D, Mocarski ES, Phillips JH, Lanier LL. 1998. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral a class I homolog. J Exp Med 187:1681–7

    PubMed  CAS  Google Scholar 

  101. Saverino D, Ghiotto F, Merlo A, Bruno S, Battini L, Occhino M, Maffei M, Tenca C, Pileri S, Baldi L, Fabbi M, Bachi A, De Santanna A, Grossi CE, Ciccone E. 2004. Specific recognition of the viral protein UL18 by CD85j/LIR-1/ILT2 on CD8+ T cells mediates the non-MHC-restricted lysis of human cytomegalovirus-infected cells. J Immunol 172:5629–37

    PubMed  CAS  Google Scholar 

  102. Tomasec P, Braud VM, Rickards C, Powell MB, McSharry BP, Gadola S, Cerundolo V, Borysiewicz LK, McMichael AJ, Wilkinson GW. 2000. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287:1031

    PubMed  CAS  Google Scholar 

  103. Ulbrecht M, Martinozzi S, Grzeschik M, Hengel H, Ellwart JW, Pla M, Weiss EH. 2000. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLAE and prevents NK cell-mediated lysis. J Immunol 164:5019–22

    PubMed  CAS  Google Scholar 

  104. Wang EC, McSharry B, Retiere C, Tomasec P, Williams S, Borysiewicz LK, Braud VM, Wilkinson GW. 2002. UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc Natl Acad Sci USA 99:7570–5

    PubMed  CAS  Google Scholar 

  105. Falk CS, Mach M, Schendel DJ, Weiss EH, Hilgert I, Hahn G. 2002. NK cell activity during human cytomegalovirus infection is dominated by US2-11-mediated HLA class I down-regulation. J Immunol 169:3257–66

    PubMed  CAS  Google Scholar 

  106. Llano M, Guma M, Ortega M, Angulo A, Lopez-Botet M. 2003. Differential effects of US2, US6 and US11 human cytomegalovirus proteins on HLA class Ia and HLA-E expression: impact on target susceptibility to NK cell subsets. Eur J Immunol 33:2744–54

    PubMed  CAS  Google Scholar 

  107. Krmpotic A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S. 2002. MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3:529–35

    PubMed  CAS  Google Scholar 

  108. Lodoen M, Ogasawara K, Hamerman JA, Arase H, Houchins JP, Mocarski ES, Lanier LL. 2003. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 197:1245–53

    PubMed  CAS  Google Scholar 

  109. Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH, Lanier LL. 2000. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12:721–7

    PubMed  CAS  Google Scholar 

  110. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. 2000. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1:119–26

    PubMed  CAS  Google Scholar 

  111. Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM. 2002. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 169:4079–83

    PubMed  CAS  Google Scholar 

  112. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. 1999. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–9

    PubMed  CAS  Google Scholar 

  113. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ. 2001. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–33

    PubMed  CAS  Google Scholar 

  114. Wu J, Chalupny NJ, Manley TJ, Riddell SR, Cosman D, Spies T. 2003. Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J Immunol 170:4196–200

    PubMed  CAS  Google Scholar 

  115. Rolle A, Mousavi-Jazi M, Eriksson M, Odeberg J, Soderberg-Naucler C, Cosman D, Karre K, Cerboni C. 2003. Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171:902–8

    PubMed  Google Scholar 

  116. Dunn C, Chalupny NJ, Sutherland CL, Dosch S, Sivakumar PV, Johnson DC, Cosman D. 2003. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 197:1427–39

    PubMed  CAS  Google Scholar 

  117. Welte SA, Sinzger C, Lutz SZ, Singh-Jasuja H, Sampaio KL, Eknigk U, Rammensee HG, Steinle A. 2003. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol 33:194–203

    PubMed  CAS  Google Scholar 

  118. Odeberg J, Browne H, Metkar S, Froelich CJ, Branden L, Cosman D, Soderberg-Naucler C. 2003. The human cytomegalovirus protein UL16 mediates increased resistance to natural killer cell cytotoxicity through resistance to cytolytic proteins. J Virol 77:4539–45

    PubMed  CAS  Google Scholar 

  119. Fletcher JM, Prentice HG, Grundy JE. 1998. Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced downregulation of cell surface class I HLA. J Immunol 161:2365–74

    PubMed  CAS  Google Scholar 

  120. Coscoy L, Ganem D. 2001. A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation. J Clin Invest 107:1599–606

    PubMed  CAS  Google Scholar 

  121. Ishido S, Choi JK, Lee BS, Wang C, DeMaria M, Johnson RP, Cohen GB, Jung JU. 2000. Inhibition of natural killer cell-mediated cytotoxicity by Kaposi’s sarcomaassociated herpesvirus K5 protein. Immunity 13:365–74

    PubMed  CAS  Google Scholar 

  122. Zocchi MR, Rubartelli A, Morgavi P, Poggi A. 1998. HIV-1 Tat inhibits human natural killer cell function by blocking L-type calcium channels. J Immunol 161:2938–43

    PubMed  CAS  Google Scholar 

  123. Poggi A, Carosio R, Spaggiari GM, Fortis C, Tambussi G, Dell’Antonio G, Dal Cin E, Rubartelli A, Zocchi MR. 2002. NK cell activation by dendritic cells is dependent on LFA-1-mediated induction of calcium-calmodulin kinase II: inhibition by HIV-1 Tat Cterminal domain. J Immunol 168:95–101

    PubMed  CAS  Google Scholar 

  124. Zheng ZY, Zucker-Franklin D. 1992. Apparent ineffectiveness of natural killer cells visa-vis retrovirus-infected targets. J Immunol 148:3679–85

    PubMed  CAS  Google Scholar 

  125. Crotta S, Stilla A, Wack A, D’Andrea A, Nuti S, D’Oro U, Mosca M, Filliponi F, Brunetto RM, Bonino F, Abrignani S, Valiante NM. 2002. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med 195:35–41

    PubMed  CAS  Google Scholar 

  126. Tseng CT, Klimpel GR. 2002. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med 195:43–9

    PubMed  CAS  Google Scholar 

  127. Orange JS, Fassett MS, Koopman LA, Boyson JE, Strominger JL. 2002. Viral evasion of natural killer cells. Nat Immunol 3:1006–12

    PubMed  CAS  Google Scholar 

  128. Raftery MJ, Schwab M, Eibert SM, Samstag Y, Walczak H, Schonrich G. 2001. Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15:997–1009

    PubMed  CAS  Google Scholar 

  129. Moutaftsi M, Mehl AM, Borysiewicz LK, Tabi Z. 2002. Human cytomegalovirus inhibits a maturation and impairs function of monocyte-derived dendritic cells. Blood 99:2913–21

    PubMed  CAS  Google Scholar 

  130. Andrews DM, Andoniou CE, Granucci F, Ricciardi-Castagnoli P, Degli-Esposti MA. 2001. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2:1077–84

    PubMed  CAS  Google Scholar 

  131. Mathys S, Schroeder T, Ellwart J, Koszinowski UH, Messerle M, Just U. 2003. Dendritic cells under influence of mouse cytomegalovirus have a physiologic dual role: to initiate and to restrict T cell activation. J Infect Dis 187:988–99

    PubMed  Google Scholar 

  132. Popkin DL, Watson MA, Karaskov E, Dunn GP, Bremner R, Virgin HWt. 2003. Murine cytomegalovirus paralyzes macrophages by blocking IFN gamma-induced promoter assembly. Proc Natl Acad Sci USA 100:14309–14

    PubMed  CAS  Google Scholar 

  133. LoPiccolo DM, Gold MC, Kavanagh DG, Wagner M, Koszinowski UH, Hill AB. 2003. Effective inhibition of K(b)-and D(b)-restricted antigen presentation in primary macrophages by murine cytomegalovirus. J Virol 77:301–8

    PubMed  CAS  Google Scholar 

  134. Gredmark S, Tilburgs T, Soderberg-Naucler C. 2004. Human cytomegalovirus inhibits cytokine-induced macrophage differentiation. J Virol 78:10378–89

    PubMed  CAS  Google Scholar 

  135. Chehimi J, Bandyopadhyay S, Prakash K, Perussia B, Hassan NF, Kawashima H, Campbell D, Kornbluth J, Starr SE. 1991. In vitro infection of natural killer cells with different human immunodeficiency virus type 1 isolates. J Virol 65:1812–22

    PubMed  CAS  Google Scholar 

  136. York IA, Johnson DC. 1993. Direct contact with herpes simplex virus-infected cells results in inhibition of lymphokine-activated killer cells because of cell-to-cell spread of virus. J Infect Dis 168:1127–32

    PubMed  CAS  Google Scholar 

  137. Fujita K, Maldarelli F, Silver J. 1996. Bimodal down-regulation of CD4 in cells expressing human immunodeficiency virus type 1 Vpu and Env. J Gen Virol 77 (Pt10):2393–401

    PubMed  CAS  Google Scholar 

  138. Chen BK, Gandhi RT, Baltimore D. 1996. CD4 down-modulation during infection of human T cells with human immunodeficiency virus type 1 involves independent activities of vpu, env, and nef. J Virol 70:6044–53

    PubMed  CAS  Google Scholar 

  139. Piguet V, Schwartz O, Le Gall S, Trono D. 1999. The downregulation of CD4 and MHCI by primate lentiviruses: a paradigm for the modulation of cell surface receptors. Immunol Rev 168:51–63

    PubMed  CAS  Google Scholar 

  140. Swann SA, Williams M, Story CM, Bobbitt KR, Fleis R, Collins KL. 2001. HIV-1 Nef blocks transport of MHC class I molecules to the cell surface via a PI 3-kinase-dependent pathway. Virology 282:267–77

    PubMed  CAS  Google Scholar 

  141. Na YS, Yoon K, Nam JG, Choi B, Lee JS, Kato I, Kim S. 2004. Nef from a primary isolate of human immunodeficiency virus type 1 lacking the EE(155) region shows decreased ability to down-regulate CD4. J Gen Virol 85:1451–61

    PubMed  CAS  Google Scholar 

  142. Levesque K, Finzi A, Binette J, Cohen EA. 2004. Role of CD4 receptor down-regulation during HIV-1 infection. Curr HIV Res 2:51–9

    PubMed  CAS  Google Scholar 

  143. Munch J, Janardhan A, Stolte N, Stahl-Hennig C, Ten Haaft P, Heeney JL, Swigut T, Kirchhoff F, Skowronski J. 2002. T-cell receptor: CD3 down-regulation is a selected in vivo function of simian immunodeficiency virus Nef but is not sufficient for effective viral replication in rhesus macaques. J Virol 76:12360–4

    PubMed  CAS  Google Scholar 

  144. Lusso P, Malnati M, De Maria A, Balotta C, DeRocco SE, Markham PD, Gallo RC. 1991. Productive infection of CD4+ and CD8+ mature human T cell populations and clones by human herpesvirus 6. Transcriptional down-regulation of CD3. J Immunol 147:685–91

    PubMed  CAS  Google Scholar 

  145. Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, O’Neill LA. 2000. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 97:10162–7

    PubMed  CAS  Google Scholar 

  146. Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, O’Neill LA. 2003. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–51

    PubMed  CAS  Google Scholar 

  147. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T. 2004. Identification of virus-encoded microRNAs. Science 304:734–6

    PubMed  CAS  Google Scholar 

  148. Bartel DP. 2004. MicroRNAs: genomics, biogenesis, R mechanism, and function. Cell 116:281–97

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Wagner, M., Misaghi, S., Ploegh, H.L. (2005). Immunoevasive Strategies: Host and Virus. In: Palese, P. (eds) Modulation of Host Gene Expression and Innate Immunity by Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3242-0_4

Download citation

Publish with us

Policies and ethics