Skip to main content

Cell Differentiation in Shoot Meristem: A Molecular Perspective

  • Chapter
Book cover Plant Biotechnology and Molecular Markers

Abstract

The basic body plan of higher plants is laid down during embryogenesis, however, the entire adult plant develops post-embryonically through the activity of two meristems (shoot and root apical meristems) established originally at the opposite ends of the embryo. This article focuses on the shoot apical meristem (SAM), which is primarily responsible for the formation of leaves and stems in the vegetative phase and converts into reproductive meristem at a specific stage of development. The SAM comprises a central zone harboring a reservoir of pluripotent stem cells and a peripheral zone, which gives rise to primordia for organs such as leaves and flowers. Studies in the past decade have unravelled some of the molecular pathways that determine stem cell fate in the central portion of the SAM as well as regulate organ formation from peripheral zone of SAM. These studies are providing insight into the information flow between various zones and cell layers of the SAM that helps in stabilizing the size of the stem cell population, so vital for cellular proliferation and regulation of plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Esau, in: Plant Anatomy (2nd ed.). John Wiley & Sons, Inc., New York. (1965).

    Google Scholar 

  2. M.M.S. Evans, M.K. Barton, Genetics of angiosperm shoot apical meristem development, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 (1997) 673–701.

    Article  CAS  PubMed  Google Scholar 

  3. J.I. Medford, F.J. Behringer, J.D. Callos, K.A. Feldmann, Normal and abnormal development in the Arabidopsis vegetative shoot apex, Plant Cell 4 (1992) 631–643.

    PubMed  Google Scholar 

  4. S. Poethig, Genetic mosaics and cell lineage analysis in plants, Trends Genet. 5 (1989) 273–277.

    Article  CAS  PubMed  Google Scholar 

  5. U. Brand, M. Hobe, R. Simon, Functional domains in plant shoot meristems, Bioessays 23 (2001) 134–141.

    Article  CAS  PubMed  Google Scholar 

  6. W.J. Lucas, S. Bouche-Pillon, D.P. Jackson, L. Nguyen, L. Baker, B. Ding, S. Hake, Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata, Science 275 (1995) 1980–1983.

    Google Scholar 

  7. T.A. Steves, I.M. Sussex, The structure of the shoot apex, In: Patterns in Plant Development, edn. 2, Cambridge University Press, Cambridge, (1989) 46–61.

    Google Scholar 

  8. P.L. Rinne, C. van der Schoot, Sympalsmic fields in the tunica of the shoot apical meristems coordinate morphogenetic events, Development 125 (1998) 1477–1485.

    CAS  PubMed  Google Scholar 

  9. M.K. Barton, R.S. Poethig, Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of the development in the wild type and in the shootmeristemless mutant, Development 119 (1993) 823–831.

    Google Scholar 

  10. D.R. Kaplan, T.J. Cooke, Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants, Plant Cell 9 (1997) 1903–1919.

    Article  CAS  PubMed  Google Scholar 

  11. M.L. Christianson, Fate map of the organizing shoot apex in Gossypium, Am. J. Bot. 73 (1986) 907–916.

    Google Scholar 

  12. U. Mayer, R.A. Torres-Ruiz, T. Berleth, S. Misera, G. Jürgens, Mutations affecting body organization in the Arabidopsis embryo, Nature 353 (1991) 402–407.

    Article  Google Scholar 

  13. R.A. Torres-Ruiz, A. Lohner, G. Jürgens, The GURKE gene is required for normal organization of the apical region in the Arabidopsis embryo, Plant J. 10 (1996) 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  14. C.S. Hardtke, T. Berleth, The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development, EMBO J. 17 (1998) 1405–1411.

    Article  CAS  PubMed  Google Scholar 

  15. T. Laux, K.F.X. Mayer, J. Berger, G. Jürgens, The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development 122 (1996) 87–96.

    CAS  PubMed  Google Scholar 

  16. K.F.X. Mayer, H. Schoof, A. Haecker, M. Lenhard, G. Jürgens, T. Laux, The role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell 95 (1998) 805–815.

    Article  CAS  PubMed  Google Scholar 

  17. W.J. Gehring, M. Affolter, T. Bürglin, Homeodomain proteins, Annu. Rev. Biochem. 63 (1994) 487–526.

    Article  CAS  PubMed  Google Scholar 

  18. D. Jackson, B. Veit, S. Hake, Expression of maize KNOTTED1 related genes in the shoot apical meristem predicts the patterns of morphogenesis in the vegetative shoot, Development 120 (1994) 405–413.

    CAS  Google Scholar 

  19. L.G. Smith, D. Jackson, S. Hake, Expression of KNOTTED1 marks the shoot meristem formation during maize embryogenesis, Dev. Genet. 16 (1995) 344–348.

    Article  Google Scholar 

  20. E. Vollbrecht, L. Reiser, S. Hake, Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, KNOTTED1, Development 127 (2000) 3161–3172.

    CAS  PubMed  Google Scholar 

  21. E. Vollbrecht, B. Veit, N. Sinha, S. Hake, The developmental gene KNOTTED1 is a member of a maize homeobox gene family, Nature 350 (1991) 241–243.

    Article  CAS  PubMed  Google Scholar 

  22. R.A. Kerstetter, E. Vollbrecht, B. Lowe, B. Veit, J. Yamaguchi, S. Hake, Sequence analysis and expression patterns divide the maize KNOTTED-like genes into two classes, Plant Cell 6 (1994) 1877–1887.

    Article  CAS  PubMed  Google Scholar 

  23. C. Lincoln, J. Long, J. Yamaguchi, K. Serikawa, S. Hake, A KNOTTED1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants, Plant Cell 6 (1994) 1859–1876.

    Article  CAS  PubMed  Google Scholar 

  24. J.A. Long, E.I. Moan, J.I. Medford, M.K. Barton, A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis, Nature 379 (1996) 66–69.

    Article  CAS  PubMed  Google Scholar 

  25. K. Endrizzi, B. Moussian, A. Haecker, J.Z. Levin, T. Laux, The SHOOTMERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE, Plant J. 10 (1996) 967–979.

    Article  CAS  PubMed  Google Scholar 

  26. J.A. Long, M.K. Barton, The development of apical embryonic pattern in Arabidopsis, Development 125 (1998) 3027–3035.

    CAS  PubMed  Google Scholar 

  27. A. Samach, J.E. Klenz, S.E. Kohlami, E. Risseeuw, G.W. Haughn, W.L. Crosby, W.L. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem, Plant J. 20 (1999) 433–445.

    Article  CAS  PubMed  Google Scholar 

  28. T. Kirch, R. Simon, M. Grunewald, W. Werr, The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION 1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development, Plant Cell 15 (2003) 694–705.

    Article  CAS  PubMed  Google Scholar 

  29. M. Aida, T. Ishida, H. Fukaki, H. Fujisawa, M. Tasaka, Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant, Plant Cell 9 (1997) 841–857.

    Article  CAS  PubMed  Google Scholar 

  30. S. Takada, K. Hibara, T. Ishida, M. Tasaka, The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation, Development 128 (2001) 1127–1135.

    CAS  PubMed  Google Scholar 

  31. E. Souer, A. van Houwelingen, D. Kloos, J. Mol, R. Koes, The NO APICALMERISTEM gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries, Cell 85 (1996) 159–170.

    Article  CAS  PubMed  Google Scholar 

  32. M. Aida, T. Ishida, M. Tsaka, Shoot apical meristem and cotyledon formation during embryogenesis: interaction between the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes, Development 123 (1999) 1563–1570.

    Google Scholar 

  33. C.W. Vroemen, A.P. Mordhorst, C. Albrecht, M.A.C.J. Kwaaitaal, S.C. de Vries, The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis, Plant Cell 15 (2003) 1563–1577.

    Article  CAS  PubMed  Google Scholar 

  34. B. Moussian, H. Schoof, A. Haecker, G. Jürgens, T. Laux, Role of ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis development, EMBO J. 17 (1998) 1799–1809.

    Article  CAS  PubMed  Google Scholar 

  35. K. Lynn, A. Fernandez, M. Aida, J. Sedbrook, M. Tsaka, P. Masson, M.K. Barton, The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with ARGONAUTE1 gene, Development 126 (1999) 469–481.

    CAS  PubMed  Google Scholar 

  36. K. Bohmert, I. Camus, C. Bellini, D. Bouchez, M. Caboche, C. Benning, AGO1 defines a novel locus of Arabidopsis controlling leaf development, EMBO J. 17 (1998) 170–180.

    Article  CAS  PubMed  Google Scholar 

  37. J.C. Fletcher, E.M. Meyerowitz, Cell signaling within the shoot meristem, Curr. Opin. Plant Biol. 3 (2000) 23–30.

    Article  CAS  PubMed  Google Scholar 

  38. D.N. Cox, A. Chao, J. Baker, L. Chang, D. Qiao, H. Lin, A novel class of evolutionarily conserved genes defined by PIWI are essential for stem cell self-renewal, Genes Dev. 12 (1998) 3715–3727.

    CAS  PubMed  Google Scholar 

  39. D. Ostuga, B. DeGuzman, M.J. Prigge, G.N. Drews, S.E. Clark, REVOLUTA regulates meristem initiation at lateral positions, Plant J. 25 (2001) 223–236.

    Google Scholar 

  40. V. Grbi_, A.B. Bleecker, Axillary meristem development in Arabidopsis thaliana, Plant J. 21 (2000) 215–223.

    Google Scholar 

  41. P.B. Talbert, H.T. Adler, D.W. Parks, L. Comai, The REVOLUTA (REV) gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana, Development 121 (1995) 2723–2735.

    CAS  PubMed  Google Scholar 

  42. R.A. Kerstetter, D. Laudencia-Chingcuanco, L.G. Smith, S. Hake, Loss-of-function mutants in the maize homeobox gene KNOTTED1 are defective in shoot meristem maintenance, Development 124 (1997) 3045–3054.

    CAS  PubMed  Google Scholar 

  43. J. McConnel, M.K. Barton, Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of the shoot apical meristems, Dev. Genet. 16 (1995) 358–366.

    Google Scholar 

  44. T. Greb, O. Clarenz, E. Schafer, D. Muller, R. Herrero, G. Schmitz, K. Theres, Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation, Genes Dev. 17 (2003) 1175–1187.

    Article  CAS  PubMed  Google Scholar 

  45. F.M. Rosin, J.K. Hart, H. Van Onckelen, D.J. Hannapel, Suppression of a vegetative MADS box gene of potato activates axillary meristem development, Plant Physiol. 131 (2003) 1613–1622.

    Article  CAS  PubMed  Google Scholar 

  46. N.R. Sinha, R.E. Williams, S. Hake, Overexpression of the maize homeobox gene KNOTTED-1 causes a switch from determinate to indeterminate cell fates, Genes Dev. 7 (1993) 787–795.

    CAS  PubMed  Google Scholar 

  47. G. Chuck, C. Lincoln, S. Hake, KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis, Plant Cell 8 (1996) 1277–1289.

    Article  CAS  PubMed  Google Scholar 

  48. H. Rupp, M. Frank, T. Werner, M. Strnad, T. Schmülling, Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem, Plant J. 18 (1999) 557–563.

    Article  CAS  PubMed  Google Scholar 

  49. G. Frugis, D. Giannino, G. Mele, C. Nicoldi, A.M. Innocenti, A. Chiapetta, M.B. Bitonti, W. Dewitte, H.W. Oncklen, D. Marioth, Are homeobox knotted-like genes and cytokinins the leaf architects? Plant Physiol. 119 (1999) 371–373.

    Article  CAS  PubMed  Google Scholar 

  50. Y. Li, F. Dubois, D. Zhou, Ectopic expression of TATA-box binding protein induces shoot proliferation in Arabidopsis, FEBS Lett. 489 (2001) 187–191.

    Article  CAS  PubMed  Google Scholar 

  51. S.E. Clark, M.P. Running, E.M. Meyerowitz, CLAVATA1, a regulator of meristem and flower development in Arabidopsis, Development 119 (1993) 397–418.

    CAS  PubMed  Google Scholar 

  52. S.E. Clark, M.P. Running, E.M. Meyerowitz, CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1, Development 121 (1995) 2057–2067.

    CAS  Google Scholar 

  53. J.M. Kayes, S.E. Clark, CLAVATA2, regulator of meristem and organ development in Arabidopsis, Development 125 (1998) 3843–3851.

    CAS  PubMed  Google Scholar 

  54. P. Laufs, O. Grandjean, C. Jonak, K. Kieu, J. Trass, Cellular patterns of the shoot apical meristem in Arabidopsis. Plant Cell 10 (1998) 1375–1389.

    Article  CAS  PubMed  Google Scholar 

  55. P. Laufs, J. Dockx, J. Kronenberger, J. Trass, MGOUN1 and MGOUN2: two genes required for primordium initiation at the shoot apical and floral meristems in Arabidopsis thaliana, Development 125 (1998) 1253–1260.

    CAS  PubMed  Google Scholar 

  56. S.E. Clark, R.E. Williams, E.M. Meyerowitz, The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis, Cell 89 (1997) 575–585.

    Article  CAS  PubMed  Google Scholar 

  57. S. Jeong, A.E. Trotochaud, S.E. Clark, The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase, Plant Cell 11 (1999) 1925–1933.

    Article  CAS  PubMed  Google Scholar 

  58. K.U. Torii, N. Mitsukawa, T. Oasumi, Y. Matsura, R. Yokoyama, R.F. Whittier, Y. Komeda, The Arabidopsis ERECTA (ER) gene encodes a putative receptor protein kinase with extracellular leucine-rich-repeats, Plant Cell 8 (1996) 735–746.

    Article  CAS  PubMed  Google Scholar 

  59. R. Yokoyama, I. Takahashi, A. Kato, K.U. Torii, Y. Komeda, The Arabidopsis ERECTA (ER) gene is expressed in the shoot apical meristem and organ primordia, Plant J. 15 (1999) 301–310.

    Google Scholar 

  60. J. Li, J. Chory, A putative leucine-rich receptor kinase involved in brassinosteroid signal transduction, Cell 90 (1997) 929–938.

    CAS  PubMed  Google Scholar 

  61. K. Schumacher, J. Chory, Brassinosteroid signal transduction: still casting the actors, Curr. Opin. Plant Biol. 3 (2000) 79–84.

    Article  CAS  PubMed  Google Scholar 

  62. A. Dievart, M. Dalal, F.E. Tax, A.D. Lacey, A. Huttly, J. Li, S.E. Clark, CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development, Plant Cell 15 (2003) 1198–1211.

    Article  CAS  PubMed  Google Scholar 

  63. B.J. Staskawicz, F.M. Ausubel, B.J. Baker, J.G. Ellis, J.D. Jones, Molecular basis of plant disease resistance, Science 268 (1995) 661–667.

    CAS  PubMed  Google Scholar 

  64. J.C. Fletcher, U. Brand, M.P. Running, R. Simon, E.M. Meyerowitz, Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems, Science 283 (1999) 1911–1914.

    Article  CAS  PubMed  Google Scholar 

  65. M. Lenhard, T. Laux, Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intracellular movement of CLAVATA3 and its sequestration by CLAVATA1, Development 130 (2003) 3163–3173.

    Article  CAS  PubMed  Google Scholar 

  66. E. Rojo, V.K. Sharma, V. Kovaleva, N.V. Raikhel, J.C. Fletcher, CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway, Plant Cell 14 (2002) 969–977.

    Article  CAS  PubMed  Google Scholar 

  67. A.E. Trotochaud, S. Jeong, S.E. Clark, CLAVATA3 a multimeric ligand for CLAVATA1 receptor kinase, Science 289 (2000) 613–617.

    Article  CAS  PubMed  Google Scholar 

  68. J.M. Stone, A.E. Trotochaud, J.C. Walter, S.E. Clark, Control of meristem development by CLAVATA1 receptor kinase and kinase-associated-protein-phosphatase interactions, Plant Physiol. 117 (1998) 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  69. A.E. Trotochaud, T. Hao, G. Wu, Z. Yang, S.E. Clark, The CLAVATA1 receptor like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein, Plant Cell 11 (1999) 393–405.

    Article  CAS  PubMed  Google Scholar 

  70. U. Brand, J.C. Fletcher, M. Hobe, E.M. Meyerowitz, R. Simon, Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity, Science 289 (2000) 617–619.

    Article  CAS  PubMed  Google Scholar 

  71. H. Schoof, M. Lenhard, A. Haecker, K.F.X. Mayer, G. Jürgens, The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between CLAVATA and WUSCHEL genes, Cell 100 (2000) 633–644.

    Article  Google Scholar 

  72. L.P. Yu, E.J. Simon, A.E. Trotochaud, S.E. Clark, POLTERGEIST functions to regulate meristem development downstream of CLAVATA loci, Development 127 (2000) 1661–1670.

    CAS  PubMed  Google Scholar 

  73. S.E. Clark, S.E. Jacobson, J.Z. Levin, E.M. Meyerowitz, The CLAVATA and SHOOTMERISTEMLESS loci competitively regulate meristem activity in Arabidopsis, Development 122 (1996) 1567–1575.

    CAS  PubMed  Google Scholar 

  74. P. Doerner, Plant stem cells: The only constant thing is change, Curr. Biol. 10 (2000) R826–R829.

    CAS  PubMed  Google Scholar 

  75. S.E. Clark, Cell signaling at the shoot meristem, Nat. Rev. Mol. Cell Biol. 2 (2001) 276–284.

    Article  CAS  PubMed  Google Scholar 

  76. M.C. Timmermans, A. Hudson, P.W. Becraft, T. Nelson, ROUGH SHEATH 2, a Myb protein that represses KNOX homeobox genes in maize lateral organ primordial, Science 284 (1999) 154–156.

    Article  Google Scholar 

  77. M. Tsiantis, R. Schneeberger, J.F. Golz, M. Freeling, J.A. Langdale, The maize ROUGH SHEATH 2 gene and leaf development programs in monocot and dicot plants, Science 284 (1999) 154–156.

    Article  CAS  PubMed  Google Scholar 

  78. R. Waites, H.R. Selvadurai, I.R. Oliver, A. Hudson, The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum, Cell 93 (1998) 779–789.

    Article  CAS  PubMed  Google Scholar 

  79. M.E. Byrne, R. Barley, M. Curtis, J. Arroyo, M. Dunham, A. Hudson, R.A. Matiensseon, ASSYMETRIC LEAVES 1 mediates leaf patterning and stem cell function in Arabidopsis, Nature 408 (2000) 967–971.

    CAS  PubMed  Google Scholar 

  80. E. Semiarti, Y. Ueno, H. Tsukaya, H. Iwakawa, C. Machida, Y. Machida, Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves, Development 128 (2001) 1771–1783

    CAS  PubMed  Google Scholar 

  81. J.L. Bowman, J. Alvarez, D. Weigel, E.M. Meyerowitz, D.R. Smyth, Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes, Development 119 (1993) 721–743.

    CAS  Google Scholar 

  82. D. Weigel, J. Alvarez, D.R. Smyth, M.F. Yanofsky, E.M. Meyerowitz, LEAFY controls floral meristem identity in Arabidopsis, Cell 69 (1992) 843–859.

    Article  CAS  PubMed  Google Scholar 

  83. J. Alvarez, C.L. Guli, X.-H. Yu, D.R. Smyth, terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2 (1992) 103–116.

    Article  Google Scholar 

  84. M. Lenhard, A. Bohnert, G. Jürgens, T. Laux, Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS, Cell 105 (2001) 805–814.

    Article  CAS  PubMed  Google Scholar 

  85. J.U. Lohmann, R.L. Hong, M. Hobe, M. Busch, F. Parcy, R. Simon, D. Weigel, A molecular link between stem cell regulation and floral patterning in Arabidopsis, Cell 105 (2001) 793–803.

    Article  CAS  PubMed  Google Scholar 

  86. M.F. Yanofsky, H. Ma, J.L. Bowman, G.N. Drews, K.A. Feldman, E.M. Meyerowitz, The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors, Nature 346 (1990) 35–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Anamaya Publishers

About this chapter

Cite this chapter

Khurana, J.P., Tripathi, L., Kumar, D., Thakur, J.K., Malik, M.R. (2004). Cell Differentiation in Shoot Meristem: A Molecular Perspective. In: Srivastava, P., Narula, A., Srivastava, S. (eds) Plant Biotechnology and Molecular Markers. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3213-7_23

Download citation

Publish with us

Policies and ethics