Skip to main content

Current Trends in Forest Tree Biotechnology

  • Chapter
Plant Biotechnology and Molecular Markers

Abstract

Modern tools of biotechnology offer a variety of options through which it is possible to match the strides made in crop improvement in agriculture and horticulture. Current trends in forest tree biotechnology indicate that this is indeed happening and that some of the hurdles of conventional forest tree improvement are no longer a serious bottleneck. The progress made in in vitro culture of forest trees and the current status of application of the technology is discussed. The trends in use of molecular tools particularly the wide variety of DNA markers available and the identification of novel genes controlling traits of interest are examined. The current status of the technology in genetic transformation of forest trees is also reviewed. The bio-safety issues in forest biotechnology especially those relating to transgenic trees are presented without bias to either side of the ongoing debate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.B. Klopfenstein, J.G. Kerl, The potential of biotechnology in temperate agroforestry practices, Agroforestry Systems 32 (1995) 29–44.

    Article  Google Scholar 

  2. D.R. Smith, P.J. Battle, C.P. Holliday, M.J. Walsh, S.A. Merkle, Progress with somatic embryogenesis, cryopreservation and transformation of slash pine. Proceedings of the 25th Biennial Southern Forest Tree Improvement Conference, July 11–14, 1999, New Orleans, LA (2000) pp. 236–238.

    Google Scholar 

  3. P. von Aderkas, J.M. Bonga, Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment, Tree Physiol. 20 (2000) 921–928.

    Google Scholar 

  4. K.H. Han, D.I. Shin, D.E. Keathley, Tissue culture responses of explants taken from branch sources with different degrees of juvenility in mature black locust (Robinia pseudoacacia) trees. Tree Physiology 17 (1997) 671–675.

    PubMed  Google Scholar 

  5. A. Romano, S. Barros, M.A. Martins-Loução, Micropropagation of the Mediterranean tree Ceratonia siliqua, Plant Cell Tissue and Organ Cult. 68 (1) (2002) 35–41.

    Article  CAS  Google Scholar 

  6. O.P. Jones, M. Welander, B.J. Waller, M.S. Ridout, Micropropagation of adult birch trees: production and field performance, Tree Physiology 16 (1996) 521–525.

    PubMed  Google Scholar 

  7. L.J. Frampton, H.V. Amerson, G.N. Leach, Tissue culture method affects ex vitro growth and development of loblolly pine, New Forests 16 (1998) 125–138.

    Google Scholar 

  8. S.S. Khuspe, P.K. Gupta, D.K. Kulkarni, U.J. Mehta, A.F. Mascarenhas, Increased biomass production by tissue culture of Eucalyptus, Can. J. For. 17(1987) 1361–1363.

    Google Scholar 

  9. S.M. Jain, P.K. Gupta, R.J. Newton (eds.) Somatic Embryogenesis in Woody Plants, Vol. 1–3, Kluwer Academic Publishers, Netherlands, 1995.

    Google Scholar 

  10. S.M. Jain, K. Ishii, Recent Advances in somatic embryogenesis in forest trees, in: Recent Advances in Biotechnology for Tree Conservation and Management, Proc. of IFS Workshop, Florianoplis, Brazil, 15–19 September 1997, International Foundation for Science. 1998, pp. 214–231

    Google Scholar 

  11. E.M. Muralidharan, A.F. Mascarenhas, Somatic embryogenesis in Eucalyptus, in: S.M. Jain, P.K., Gupta, R.J. Newton (Eds) Somatic Embryogenesis in Woody Plants, Vol. 2, Kluwer Academic Publishers, Netherlands, (1995), pp 23–40.

    Google Scholar 

  12. K.V. Mullins, D.J. Llewellyn, V.J. Hartney, S. Strauss, E.S. Dennis, Regeneration and transformation of Eucalyptus camaldulensis, Plant Cell Rep. 16 (1997) 787–791.

    Article  CAS  Google Scholar 

  13. C. J. Tsai, Y.N. Wang, C.H. Chiang, Callus induction and plant regeneration from embryos of Eucalyptus saligna., Q. Jour. Chin. For. 25 (3) (1992) 3–14.

    Google Scholar 

  14. M.P. Watt, F.C. Blakeway, C.F. Cresswell, B. Herman, Somatic embryogenesis in Eucalyptus grandis, South African Forestry Journal, 157(1991) 159–165.

    Google Scholar 

  15. Z. Xing, W.A. Powell, C.A. Maynard, Development and germination of American chestnut somatic embryos, Plant Cell Tissue Org Cult. 57 (1999) 47–55.

    Article  Google Scholar 

  16. A.F. Mascarenhas, E.M. Muralidharan, Tissue culture of forest trees in India, Curr. Sci. 58 (1989) 606–613.

    Google Scholar 

  17. A.F. Mascarenhas, E.M. Muralidharan, Clonal Forestry with Tropical Hardwoods, in: M.R. Ahuja, W.J. Libby (Eds), Clonal Forestry II: Conservation and Application, Springer-Verlag. (1993) pp 169–187.

    Google Scholar 

  18. M.H. El-Lakhany, Rapid propagation of fast growing tree species in developing countries: Its potentials, constraints and future developments, in: F.W.G Baker (Ed) Rapid Propagation of Fast Growing Woody Species, CAB International, (1992) pp.102–108.

    Google Scholar 

  19. DBT, Plant Tissue Culture: From Research to Commercialisation, A Decade of Support, Department of Biotechnology, New Delhi, 2000, pp. 1–224.

    Google Scholar 

  20. Z. Fadillah, M.Y. Aziah, Collection techniques for in vitro propagation of Tectona grandis (Teak), in: Paper presented at the 5th Conference on Forestry and Forest Products Research (CFFPR), Series 4–5th, October, 1999, FRIM, Kepong, Malaysia

    Google Scholar 

  21. M.D. Gradaille, L. Ramos, Y. Lezcano, R. Rodrigues, M. Escalona, Algunos elementos en la micropropagacion de la teca, Biotecnologia vegetal, 1 (2000) 39–44.

    Google Scholar 

  22. S.V. Kendurkar, R.S. Nadgauda, S. Von Arnold, Studies on cryopreservation of teak (Tectona grandis): a tropical hard wood tree (Abstract), in: International Tree Biotechnology Meeting, NCL, India, 1999, pp. 53–57.

    Google Scholar 

  23. P.S. Rao, V.A. Bapat, Micropropagation of Sandalwood (Santalum album L.) and mulberry (Morus indica L.), in: M.R. Ahuja (ed.) Micropropagation of Woody Plants. Kluwer Academic Publ. Netherlands, (1993) pp. 317–346.

    Google Scholar 

  24. P.S. Rao and V.A. Bapat, Somatic embryogenesis in Sandalwood (Santalum album L.) and mulberry (Morus indica L.), in: S.M. Jain, P.K. Gupta and R.J. Newton (Eds), Somatic Embryogenesis in Woody Plants. Kluwer Acad. Publ. Netherlands, (1995) pp. 153–170.

    Google Scholar 

  25. G. Lakshmi Sita, A. Bhattacharya, Cell and molecular approaches for obtaining disease resistance plants in sandalwood, in: International Seminar on Sandalwood and its Products, Bangalore, India, 1997, pp. 5.

    Google Scholar 

  26. V.A. Bapat, In vitro studies on sandal wood (Santalum album L.), in: Paper presented at the International Tree Biotechnology Meeting (Nov.17–19) National Chemical Laboratory, Pune, 1999 pp. 19–23.

    Google Scholar 

  27. P. Das, S. Samantaray, A.V. Roberts, G.R. Rout, In vitro somatic embryogenesis of Dalbergia sissoo Roxb.—a multipurpose timber-yielding tree, Plant Cell Rep. 16(8) (1997) 578–582.

    CAS  Google Scholar 

  28. A.K. Singh, S. Chand, S. Pattnaik, P. K. Chand, Adventitious shoot organogenesis and plant regeneration from cotyledons of Dalbergia sissoo Roxb., a timber yielding tree legume, Plant Cell Tissue Org. Cult. 68 (2) (2002) 203–209.

    Article  Google Scholar 

  29. P. Das, G.R. Rout, Analysis of current methods and approaches on the micropropagation of bamboo, Proc. Natl. Acad. Sci. (India), LXIV(B) (1994) 235–246.

    Google Scholar 

  30. C. X. Zhang, Y.F. Xie, Y.F. Zhang, D.T. He, T.B. Chen, W.W. Wu, The current advances in bamboo tissue culture and its prospects, Journal of Bamboo Research 18(3)(1999) 46–49.

    Google Scholar 

  31. H.C. Chaturvedi, M. Sharma, A.K. Sharma, In vitro regeneration of Dendrocalamus strictus Nees through nodal segments taken from field-grown culms, Plant Science Limerick. 91(1) (1993) 97–101.

    CAS  Google Scholar 

  32. S. Saxena, S.S. Bhojwani, Towards regeneration and mass propagation of bamboo through tissue culture: Bamboo in Asia and the Pacific, Proceedings of the Fourth International Bamboo Workshop, 27–30 November 1991, Chiangmai, Thailand (1994) 157–164.

    Google Scholar 

  33. S. Mukunthakumar, J. Mathur, Artifical seed production in the male bamboo Dendrocalamus strictus L. Plant Science (Limerick) 87(1) (1992) 109–113.

    Google Scholar 

  34. A.F. Mascarenhas, S.S. Khuspe, R.S. Nadgauda, P.K. Gupta, E.M. Muralidharan, B.M. Khan, Biotechnological application of plant tissue culture to forestry in India, in: V. Dhawan (Ed), Applications of Biotechnology in Forestry and Horticulture, Plenum Press (1989) pp. 73–86.

    Google Scholar 

  35. L.C. Huang, B.L. Huang, Bamboo tissue culture. Institute of Botany, Academia Sinica Monograph Series No. 13 (1993) 203–212.

    Google Scholar 

  36. J G.N. Que, Q. Zhuge, Study on cell suspension culture and isolation of protoplasts of Dendrocalamus membranceus, Forest Research 7(1) (1994) 44–47.

    Google Scholar 

  37. H.R. Heuch, In vitro flowering of bamboo species—prospects and aims, in: Zhu Shilin, Li Weidong, Zhang Xinping, Wang Zhongming (Eds) Bamboo and its Use, Proc. of International Symposium on Industrial Use of Bamboo, 7—11 December 1992, Beijing, China 1993.

    Google Scholar 

  38. R.S. Nadgauda, V.A. Parasharami, A. F. Mascarenhas, Precaucious flowering and seedling behaviour in tissue cultured bamboos. Nature, 344 (1990): 335–336.

    Article  Google Scholar 

  39. Gielis, J., Peeters, H., Gillis, K., Oprins, J., Debergh, P.C. Tissue culture strategies for genetic improvement of bamboo. Acta Hort. (ISHS) 552 (2001) 195–204.

    Google Scholar 

  40. K. Valsala, E.M. Muralidharan, Plant regeneration from in vitro cultures of rattan (Calamus), in: A.D. Damodharan (Ed), Proceedings of 10th Kerala Science Congress, Kozhikode, January 1998, pp. 161–163.

    Google Scholar 

  41. K. Valsala, E.M. Muralidharan, In vitro regeneration in three species of Rattan (Calamus spp.), in: P.B. Kavi Kishor (Ed), Plant Tissue Culture and Biotechnology: Emerging Trends, Universities Press. (1999) pp. 118–122.

    Google Scholar 

  42. P. Chuthamas, P. Prutpong, I. Vong Kaluang, S. Tantiwiwat, In vitro culture of immature embryos of Calamus manan Miq, in: A.N. Rao Isara Vongkaluang (Eds) Recent Research on Rattans, Kasetsart University, Thailand and IDRC, Canada (1989). pp144–147.

    Google Scholar 

  43. L.F. Patena, M.M.S. Mercado, R.C. Barba, Rapid propagation of rattan (C. manillensis H.A. Wendl.) by tissue culture, Philip. J. Crop Sci. 9(1984) 217–218.

    Google Scholar 

  44. M.Y. Aziah, M.N. Nur Supardi, Initial growth of tissue culture raised Calamus manan seedlings. RIC Bulletin 12 (1/2) (1994) 6–7.

    Google Scholar 

  45. Z. Maziah, Preliminary studies on growth dependency of in vitro micropropagated Calamus manan on vesicular arbuscular mycorrhiza (VAM) prior to transplanting to field, RIC Bulletin 10(1) (1991).

    Google Scholar 

  46. S.M.S.D. Ramanayake, Viability of excised embryos, shoot proliferation and in vitro flowering in a species of rattan Calamus thwaitesii Becc. Journal of Horticultural Science and Biotechnology 74(5) (1999) 594–601.

    Google Scholar 

  47. D.K.S Goh, N. Michaux Ferriere, O. Monteuuis, M.C. Bon, Evidence of somatic embryogenesis from root tip explants of the rattan Calamus manan. In Vitro Cellular and Developmental Biology (Plant) 35(5) (1999) 424–427.

    Google Scholar 

  48. N.B. Jones, J. Van Staden, Somatic embryogenesis in Pinus patula. Scheide et Deppe, in: S.M. Jain, P.K. Gupta, R.J. Newton (Eds), Somatic Embryogenesis in Woody Plants. Vol. 4. Kluwer Academic Publishers, Dordrecht, 1999, pp. 431–447.

    Google Scholar 

  49. N.B. Jones J. Van Staden, Improved somatic embryo production from embryogenic tissue of Pinus patula. In Vitro Cellular and Development, Biol. Plant, 37 (2001) 543–549.

    Google Scholar 

  50. M.R. Becwar, G.S. Pullman, Somatic embryogenesis in loblolly pine (Pinus taeda L.), in: S.M. Jain, P.K. Gupta, R.J. Newton (Eds), Somatic Embryogenesis in Woody Plants Vol. 3, Gymnosperms, Kluwer, The Netherlands, 1995, pp. 287–301.

    Google Scholar 

  51. P.K. Gupta, J.A. Grob, Somatic embryogenesis in conifers, in: S.M. Jain, P.K. Gupta, R.J. Newton (Eds), Somatic Embryogenesis in Woody Plants. Vol. 1. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1995 pp. 81–98.

    Google Scholar 

  52. P.K. Gupta, G.S. Pullman, Method for Reproducing Conifers by Somatic Embryogenesis Using Stepwise Hormone Adjustment, U.S. Patent No. 5236841, August 17, 1993.

    Google Scholar 

  53. P.K. Gupta, G.S. Pullman, Method for Reproducing Douglas fir by Somatic Embryogenesis. U.S. Patent No. 5482857, January 9, 1996.

    Google Scholar 

  54. G.S. Pullman, P.K. Gupta, Method for Reproducing Conifers by Somatic Embryogenesis Using Mixed Growth Hormones for Embryo Culture, U.S. Patent No. 5294549. March 15, 1994.

    Google Scholar 

  55. J.A. Gleed, Development of plantlings and stecklings of radiata pine, in: M.R. Ahuja, W.J. Libby (Eds), Clonal Forestry II: Conservation and Application, Springer-Verlag. (1993). pp. 149–168.

    Google Scholar 

  56. H.J. Huang, Y. Chen, J.L. Kuo, T.T. Kuo, C.C. Tzeng, B.L. Huang, C.M. Chen, L.C. Huang, Rejuvenation of Sequoia sempervirens in vitro: changes in isoesterases and isoperoxidases. Plant and Cell Physiology 37 (1996) 77–80.

    CAS  Google Scholar 

  57. P.K. Gupta, G. Pullman, R. Timmis, M. Kreitinger, W.C. Carlson, J.E. Grob, E. Welty, Forestry in the 21st Century: The biotechnology of somatic embryogenesis, Biotechnology 11 (1993) 454–459.

    Google Scholar 

  58. International Foundation for Science, Recent Advances in Biotechnology for Tree Conservation and Management, Proceedings of an IFS Workshop, Florianopolis, 15–19 Sept.1997.

    Google Scholar 

  59. D.L. Remington, R.W. Whetten, B.-H. Liu, D.M. O’Malley, Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theo. Appl. Gen., 98 (1999) 1279–1292.

    CAS  Google Scholar 

  60. P.L. Wilcox, H.V. Amerson, E.G. Kuhlman, B.-H. Liu, D.O. O’Malley, R.R. Sederoff, Detection of genetic resistance to fusiform rust disease in loblolly pine by genomic mapping, Proc. Nat. Acad. Sci. 93 (1995) 3859–3864.

    Google Scholar 

  61. S. Thomas, M. Balasundaran, Detection of sandal spike phytoplasma by polymerase chain reaction, Curr. Sci. 76 (1999.) 1574–1576.

    CAS  Google Scholar 

  62. D. Grattapaglia, A.Y. Ciampi, F.A. Gaiotto, M.G. Squilassi, R.G. Collevatti, V.J. Ribeiro, A.M. Reis, F.B. Gandara, B.M. Walter, R.P.V. Brondani, in: Recent Advances in Biotechnology for Tree Conservation and Management, Proceedings of an IFS Workshop, Florianopolis, International Foundation for Science 1998, pp. 50–61.

    Google Scholar 

  63. D. Grattapaglia, R.R. Sederoff, Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers, Genetics 137 (1994) 1121–1137.

    CAS  PubMed  Google Scholar 

  64. D. Grattapaglia, F.L. Bertolucci, R. Penchel, R.R. Sederoff, Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers, Genetics 144 (1996) 1205–1214.

    CAS  PubMed  Google Scholar 

  65. C. Plomion, N. Barhman, C.E. Durel, D. O’Malley, Genomic mapping in Pinus pinaster (maritime pine) using RAPD and protein markers, Heredity 74 (1995) 661–668.

    CAS  Google Scholar 

  66. C.M. Marques, J.A. Arańjo, J.G. Ferreira, R. Whetten, D.M. O’Malley, B. H. Liu, R.R. Sederoff, AFLP genetic maps of Eucalyptus globulus and E. tereticornis, Theor. Appl. Genet. 96 (1998) 727–737.

    Article  CAS  Google Scholar 

  67. R. Rutledge, S. Regan, O. Nicolas, P. Fobert, C. Côté, W. Bosnich, C. Kauffeldt, G. Sunohara, A. Séguin, D. Stewart, Characterization of an AGAMOUS homologue from the conifer black spruce that produces floral homeotic conversions when expressed in Arabidopsis. The Plant J. 15 (1998) 625–634.

    CAS  Google Scholar 

  68. W.H. Rottmann, R. Meilan, L.A. Sheppard, A.M. Brunner, J.S. Skinner, C. Ma, S. Cheng, L. Jouanin, G. Pilate, S.H. Strauss, Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis, Plant J. 22 (2000) 235–246.

    Article  CAS  PubMed  Google Scholar 

  69. J.S. Skinner, R. Meilan, A.M. Brunner, S.H. Strauss, Options for genetic engineering of floral sterility in forest trees, in: S.M. Jain, S.C. Minocha (Eds), Molecular Biology of Woody Plants, Vol. 1. Kluwer Academic Publishers, Dordrecht, The Netherlands, (2000) pp. 135–153.

    Google Scholar 

  70. M.B. Mayne, J.R. Coleman, E. Blumwald, Differential expression during drought conditioning of a root-specific S-adenosylmethionine synthetase from jack pine (Pinus banksiana Lamb.) tiseedlings, Plant, Cell and Environment 19 (1996) 958–966.

    CAS  Google Scholar 

  71. J.Z. Dong, D.I. Dunstan, Characterization of three heat-shock-protein genes and their developmental regulation during somatic embryogenesis in white spruce (Picea glauca (Moench) Voss), Planta. 200 (1996) 85–91.

    Article  CAS  PubMed  Google Scholar 

  72. S.J. Chang, J. Puryear, E.A. Funkhouser, R.J. Newton, J. Cairney, Cloning of a cDNA for a chitinase homologue which lacks chitin-binding sites and is down-regulated by water stress and wounding, Plant-Molecular-Biology 31 (1996) 693–699.

    CAS  PubMed  Google Scholar 

  73. C.H. Foyer, N. Souriau, S. Perret, M. Lelandais, K.J. Kunert, C. Pruvost, L. Jouanin, Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant-Physiology, 109 (1995) 1047–1057.

    CAS  PubMed  Google Scholar 

  74. C. Rouvier, S. Nazaret, M.P. Fernandez, B. Picard, S. Simonet, P. Normand, Rrn and nif intergeneric spacers and isoenzyme patterns as tools to characterize Casuarina-infective Frankia strains, Acta Oecologica, 13 (1992) 487–495

    Google Scholar 

  75. M. Valdes, H. Olivera, L. Vasquez, N.-O. Perez, Developing genetic markers for ecological studies of the symbiosis Casuarina-Frankia, in: Recent Advances in Biotechnology for Tree Conservation and Management, Proceedings of an IFS Workshop, Florianopolis, 15–19 Sept.1997 (1998), pp. 308–316.

    Google Scholar 

  76. J.J. MacKay, W.W. Liu, R. Whetten, R. Sederoff, D. O’Malley, Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Mol. Genet. 247 (1995) 537–545.

    CAS  Google Scholar 

  77. K.S. Voo, R.W. Whetten, D.M. O’Malley, R.R. Sederoff, 4-Coumarate: CoA ligase from loblolly pine xylem: Isolation, characterization and cDNA cloning, Plant Physiol. 108 (1995) 85–97.

    Article  CAS  PubMed  Google Scholar 

  78. C.J. Tsai, M.R. Mielke, J.L. Popko, W.-J. Hu, G.K. Podila, V.L. Chiang Novel wood coloration and altered lignin composition in transgenic aspen through manipulation of caffeic acid/5-hydroxyferulic acid o-methyltransferase gene expression, Plant Physiology 114 (3) (1997) 300.

    Google Scholar 

  79. C.J. Tsai, J.L. Popko, M.R. Mielke, W.J. Hu, G.K. Podila, V.L. Chiang Suppression of o-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes, Plant Physiology, 117 (1998) 101–112.

    Article  CAS  PubMed  Google Scholar 

  80. W.J. Hu, S.A. Harding, J. Lung, J.L. Popko, A. Kawaoka, Y.Y. Kao, K. Osakabe, H. Suzuki, D.D. Stokke, C.J. Tsai, V.L. Chiang, Repression of lignin biosynthesis in transgenic trees results in pleiotropic effects including high-cellulose and accelerated growth phenotypes, in: Wood and Wood Fibers: Properties and Genetic Improvement, IEG-40 Workshop, July 19–22, 1998, Atlanta, Georgia.

    Google Scholar 

  81. W.J. Hu, J.L. Popko, J. Lung, A. Kawaoka, Y.Y. Kao, S. Hideki, D.D. Stokke, C.J. Tsai, V.L. Chiang, Transgenic aspen trees with reduced lignin quantity and increased cellulose content, in: 215th American Chemical Society National Meeting, March 31–April 2, 1998, Dallas, Texas.

    Google Scholar 

  82. I. Allona, M. Quinn, E. Shoop, K. Swope, S. St. Cyr, J. Carlis, J. Riedl, E. Retzel, M.M. Campbell, R. Sederoff, R.W. Whetten, Analysis of xylem formation in pine by cDNA sequencing, PNAS USA 95 (1998) 9693–9698.

    CAS  PubMed  Google Scholar 

  83. C.K. Ho, S.H. Chang, J.Y. Tsay, C.J. Tsai, V.L. Chiang, Z.Z. Chen, Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants, Plant Cell Reports 17 (1998) 675–680.

    Article  CAS  Google Scholar 

  84. C.-J. Tsai, G.K. Podila, V.L. Chiang, Agrobacterium-mediated transformation of quaking aspen (Populus tremuloides) and regeneration of transgenic plants, Plant Cell Reports 14 (1994) 94–97.

    Article  CAS  Google Scholar 

  85. V.L. Chiang, Z.Z. Chen, G.K. Podila, W.Y. Wang, R.C. Bugos, W.H. Campbell, U.N. Dwivedi, J. Yu, C.J. Tsai, J.Y. Tsay, J.C. Yang, Genetic manipulation of lignification in Liquidambar styraciflua (sweetgum) by introduction of a chimeric sense or antisense o-methyltransferase gene cloned from Populus tremuloides (aspen), in: Intl. Conf. on Emerging Technologies for Pulp and Paper Industry, May 18–20, Taipei, Taiwan, 1993, pp. 26–29.

    Google Scholar 

  86. R.J. Newton, J.C. Bloom, D.H. Bivans, S.M. Jain, Stable genetic transformation of conifers, Phytomorphology Golden Jubilee Issue 2001 421–434.

    Google Scholar 

  87. J.B. Hollick, M.P. Gordon, A poplar tree proteinase inhibitor-like gene promoter is responsive to wounding in transgenic tobacco, Plant Molecular Biology 22 (1993) 561–572.

    Article  CAS  PubMed  Google Scholar 

  88. A.C. Smigocki, J.W. Neal, Enhanced insect resistance in plants genetically engineered with a plant hormone gene involved in cytokinin synthesis, United States Patent No. 5496732 (1996).

    Google Scholar 

  89. A.R. Wenck, M. Quinn, R.W. Whetten, G. Pullman, R.R. Sederoff, High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda), Plant Mol. Biol. 39 (1998) 407–416.

    Google Scholar 

  90. Position Statement on Benefits and Risks of Transgenic Plantations, IUFRO Working Party on Molecular Biology of Forest Trees, 2.04.06, September 1999. http://users.ox.ac.uk/~dops0022/conference/forest_biotech99_home.html

  91. FAO, Summary Document of Conference on Gene flow from GM to non-GM populations in the crop, forestry, animal and fishery sectors, FAO Electronic Forum on Biotechnology in Food and Agriculture, 31 May to 5 July 2002. http://www.fao.org/biotech/logs/C7/summary.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Anamaya Publishers

About this chapter

Cite this chapter

Muralidharan, E., Kallarackal, J. (2004). Current Trends in Forest Tree Biotechnology. In: Srivastava, P., Narula, A., Srivastava, S. (eds) Plant Biotechnology and Molecular Markers. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3213-7_11

Download citation

Publish with us

Policies and ethics