Skip to main content

Abstract

This paper addresses a new approach in solving the problem of shape preserving spline interpolation. Based on the formulation of the latter problem as a differential multipoint boundary value problem for hyperbolic and biharmonic tension splines we consider its finite-difference approximation. The resulting system of linear equations can be efficiently solved either by direct (Gaussian elimination) and iterative methods (successive over-relaxation (SOR) method and finite-difference schemes in fractional steps). We consider the basic computational aspects and illustrate the main advantages of this original approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akima, H., A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mech. 17 (1970), 589–602.

    MATH  Google Scholar 

  2. Bouhamedi, A. and Le Méhauté, A., Spline curves and surfaces with tension, Wavelets, Images, and Surface Fitting, Laurent, P. J., Le Méhauté, A., and Schumaker, L. L. (eds.), A K Peters, Wellesley, MA, pp. 51–58, 1994.

    Google Scholar 

  3. Costantini, P., Kvasov, B. I., and Manni, C., On discrete hyperbolic tension splines, Adv. Comput. 11 (1999), 331–354.

    Article  MathSciNet  Google Scholar 

  4. Duchon, J., Splines minimizing rotation invariant semi-norms in Sobolev spaces, Constructive Theory of Functions of Several Variables, Schempp, W. and Zeller, K. (eds.), Lecture Notes in Mathematics, Vol. 571, Springer, pp. 85–100, 1977.

    Google Scholar 

  5. Franke, R., Thin plate splines with tension, Surfaces in CAGD'84, Barnhill, R. E. and Böhm, W. (eds.), North-Holland, pp. 87–95, 1985.

    Google Scholar 

  6. Golub, G. H., and Van Loan, C. F., Matrix Computations, John Hopkins University Press, Baltimore, 1991.

    Google Scholar 

  7. Hoschek, J. and Lasser, D., Fundamentals of Computer Aided Geometric Design, A K Peters, Wellesley, MA, 1993.

    Google Scholar 

  8. Janenko, N. N. and Kvasov, B. I., An iterative method for construction of polycubic spline functions, Soviet Math. Dokl. 11 (1970), 1643–1645.

    Google Scholar 

  9. Koch, P. E. and Lyche, T., Interpolation with Exponential B-splines in Tension, in: Geometric Modelling, Computing/Supplementum 8. Farin G. et al. (eds.), Springer-Verlag, Wien, pp. 173–190, 1993.

    Google Scholar 

  10. Kounchev, O., Multivariate Polysplines: Applications to Numerical and Wavelet Analysis, Academic Press, San Diego, 2001.

    Google Scholar 

  11. Kvasov, B. I., Methods of Shape-Preserving Spline Approximation, World Scientific Publ. Co. Pte. Ltd., Singapore, 2000.

    Google Scholar 

  12. Kvasov, B. I., On interpolating thin plate tension splines, Curve and Surface Fitting: Saint-Malo 2002, Cohen, A., Merrien, J.-L., and Schumaker, L. L., Nashboro Press, Brentwood, 2003, pp. 239–248.

    Google Scholar 

  13. Laurent, P. J., Approximation et Optimization, Hermann, Paris, 1972.

    Google Scholar 

  14. Malcolm, M. A., On the computation of nonlinear spline functions, SIAM J. Numer. Anal. 14 (1977), 254–282.

    Article  MATH  MathSciNet  Google Scholar 

  15. Marušić, M. and Rogina, M., Sharp error bounds for interpolating splines in tension, J. of Comp. Appl. Math. 61 (1995), 205–223.

    Article  Google Scholar 

  16. Renka, R. J., Interpolation tension splines with automatic selection of tension factors, SIAM J. Sci. Stat. Comp. 8 (1987), 393–415.

    Article  MATH  MathSciNet  Google Scholar 

  17. Rentrop, P., An algorithm for the computation of exponential splines, Numer. Math. 35 (1980), 81–93.

    Article  MATH  MathSciNet  Google Scholar 

  18. Sapidis, N. S. and Kaklis, P. D., An algorithm for constructing convexity and monotonicity-preserving splines in tension, Computer Aided Geometric Design 5 (1988), 127–137.

    Article  MathSciNet  Google Scholar 

  19. Schumaker, L. L., Spline Functions: Basic Theory, John Wiley & Sons, New York, 1981.

    Google Scholar 

  20. Schweikert, D. G., An interpolating curve using a spline in tension, J. Math. Phys. 45 (1966), 312–317.

    MATH  MathSciNet  Google Scholar 

  21. Yanenko, N. N., The Method of Fractional Steps, Springer Verlag, New York, 1971.

    Google Scholar 

  22. Zav'yalov, Yu. S., Kvasov, B. I., and Miroshnichenko, V. L., Methods of Spline Functions, Nauka, Moscow, 1980 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Kvasov, B.I. (2005). DMBVP for Tension Splines. In: Drmač, Z., Marušić, M., Tutek, Z. (eds) Proceedings of the Conference on Applied Mathematics and Scientific Computing. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3197-1_3

Download citation

Publish with us

Policies and ethics