Skip to main content

Abstract

In this paper we present main points in the process of application of numerical schemes for hyperbolic balance laws to water wave propagation and flooding. The appropriate mathematical models are the one-dimensional open channel flow equations and the two-dimensional shallow water equations. Therefore good simulation results can only be obtained with well-balanced numerical schemes such as the ones developed by Bermùdez and Vázquez, Hubbard and García-Navarro, LeVeque, etc. as well as the ones developed by the authors of this paper. We also propose a modification of the well-balanced Q-scheme for the two-dimensional shallow water equations that solves the wetting and drying problem. Finally, we present numerical results for three simulation tasks: the CADAM dam break experiment, the water wave propagation in the Toce river, and the catastrophic dam break on the Malpasset river.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. S. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions, preprint, (2001).

    Google Scholar 

  2. A. Bermùdez, A. Dervieux, J. A. Désideéri and M. E. Vázquez, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Comput. Methods Appl. Mech. Eng. 155, 49 (1998).

    Article  Google Scholar 

  3. A. Bermùdez and M. E. Váquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids 23(8), 1049 (1994).

    Article  MathSciNet  Google Scholar 

  4. M. O. Bristeau and B. Perthame, Transport of pollutant in shallow water using kinetic schemes, ESAIM-Proceedings Vol. 10 — CEMRACS, 9 (1999).

    MathSciNet  Google Scholar 

  5. P. Brufau, M. E. Vázquez-Cendón, P. García-Navarro, A numerical model for the flooding and drying of irregular domains, Int. J. for Numerical Methods in Fluids, Vol. 39, 247–275 (2002).

    Article  Google Scholar 

  6. P. Brufau, P. García-Navarro, Unsteady free surface flow simulation over complex topography with multidimensional upwind technique, J. of Computational Physics, Vol. 186, 503–526 (2003).

    Article  Google Scholar 

  7. J. Burguete and P. García-Navarro, Efficient construction of high-resolution TVD conservative schemes for equations with source terms: application to shallow water flows, Int. J. Numer. Meth. Fluids 37 (2001). doi: 10.1002/fld.175.

    Google Scholar 

  8. A. Chinnaya and A.-Y. LeRoux, A new general Riemann solver for the shallow water equations, with friction topography, http://www.math.ntnu.no/conservation/1999/021.html.

    Google Scholar 

  9. N. Crnjaric-Zic, S. Vukovic, and L. Sopta, Extension of ENO and WENO schemes to one-dimensional sediment transport equations, Comput. Fluids, article in press.

    Google Scholar 

  10. G. Dal Maso, P. G. LeFloch and F. Murat, Definition and weak stability of a non-conservative product, J. Math. Pures Appl., 74, 483, (1995).

    MathSciNet  Google Scholar 

  11. P. García-Navarro and M. E. Vázquez-Cendón, On numerical treatment of the source terms in the shallow water equations, Comput. Fluids 29, 951 (2000).

    Article  Google Scholar 

  12. J. M. Greenberg and A.-Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1 (1996).

    Article  MathSciNet  Google Scholar 

  13. L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl., 39, 135 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci., 11, 339 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Harten and S. Osher, Uniformly high-order accurate non-oscillatory schemes, I, SIAM J. Numer. Anal. 24, 279 (1987).

    Article  MathSciNet  Google Scholar 

  16. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high-order accurate non-oscillatory schemes, III, J. Comput. Phys. 71, 231 (1987).

    Article  MathSciNet  Google Scholar 

  17. M. E. Hubbard and P. García-Navarro, Flux difference splitting and the balancing of source terms and flux gradients, J. Comput. Phys. 165, (2000), doi: 10.1006/jcph.2000.6603.

    Google Scholar 

  18. P. Jenny and B. Müller, Rankine-Hugoniot-Riemann solver considering source terms and multidimensional effects, J. Comput. Phys. 145, 575 (1998).

    Article  MathSciNet  Google Scholar 

  19. S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, Math. Model. Num. Anal., 35 631 (2001).

    Article  MATH  Google Scholar 

  20. P. G. LeFloch and A. E. Tzavaras, Representation of week limits and definition of non-conservative products, SIAM J. Math. Anal., 30, 1309, (1999).

    Article  MathSciNet  Google Scholar 

  21. R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys. 146, 346 (1998).

    Article  MathSciNet  Google Scholar 

  22. X.-D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115, 200, (1994).

    Article  MathSciNet  Google Scholar 

  23. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, CALCOLO, 38(4), 201 (2001).

    Article  MathSciNet  Google Scholar 

  24. J. D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case, SIAM J. Numer. Anal., 39, 1197 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  25. M. E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. Comput. Phys. 148, 497 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Vukovic and L. Sopta, ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations, J. Comput. Phys. 179, 593 (2002), doi: 10.1006/jcph.2002.7076.

    Article  MathSciNet  Google Scholar 

  27. S. Vukovic and L. Sopta, Upwind schemes with exact conservation property for one-dimensional open channel flow equations, SIAM J. Scient. Comput., 24(5), 1630 (2003).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Sopta, L., Črnjarić-Žic, N., Vuković, S., Holjević, D., Škifić, J., Družeta, S. (2005). Numerical Simulations of Water Wave Propagation and Flooding. In: Drmač, Z., Marušić, M., Tutek, Z. (eds) Proceedings of the Conference on Applied Mathematics and Scientific Computing. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3197-1_22

Download citation

Publish with us

Policies and ethics