Skip to main content

Insect Diversity

  • Chapter
Entomology
  • 3475 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. D., and Brown, W. L., Jr., 1963, Mating behavior and the origin of insect wings, Occas. Pap. Mus. Zool. Univ. Mich. 628:1–19.

    Google Scholar 

  • Becker, H. F., 1965, Flowers, insects, and evolution, Nat. Hist. 74:38–45.

    Google Scholar 

  • Berkner, L. V., and Marshall, L. C., 1965, On the origin and rise of oxygen concentration in the earth’s atmosphere, J. Atmos. Sci. 22:225–261.

    Article  CAS  Google Scholar 

  • Boudreaux, H. B., 1979, Arthropod Phylogeny with Special Reference to Insects, Wiley, New York.

    Google Scholar 

  • Brodsky, A. K., 1994, The Evolution of Insect Flight, Oxford University Press, Oxford.

    Google Scholar 

  • Carpenter, F. M., 1977, Geological history and evolution of the insects, Proc. XV Int. Congr. Entomol., pp.63–70.

    Google Scholar 

  • Carpenter, F. M., 1992, Treatise on Invertebrate Paleontology. Part R. Arthropoda 4, Vols. 3 and 4 (Superclass Hexapoda), University of Kansas, Lawrence.

    Google Scholar 

  • Crowson, R. A., 1960, The phylogeny of Coleoptera, Annu. Rev. Entomol. 5:111–134.

    Article  Google Scholar 

  • Crowson, R. A., 1975, The evolutionary history of Coleoptera, as documented by fossil and comparative evidence, Atti Congr. Naz. Ital. Ent. 10:47–90.

    Google Scholar 

  • Crowson, R. A., 1981, The Biology of the Coleoptera, Academic Press, New York.

    Google Scholar 

  • Douglas, M. M., 1981, Thermoregulatory significance of thoracic lobes in the evolution of insect wings, Science 211:84–86.

    ISI  PubMed  Google Scholar 

  • Dudley, R., 1998, Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance, J. Exp. Biol. 201:1043–1050.

    PubMed  CAS  Google Scholar 

  • Dudley, R., 2001, The biomechanics and functional diversity of flight, in: Insect Movement: Mechanisms and Consequences (I. P. Woiwod, D. R. Reynolds, and C. D. Thomas, eds.), CAB International, Wallingford, U.K.

    Google Scholar 

  • Ellington, C. P., 1991, Aerodynamics and the origin of insect flight, Adv. Insect Physiol. 23:171–210.

    Google Scholar 

  • Engel, M. S., and Grimaldi, D. A., 2004, New light shed on the oldest insect, Nature 427:627–630.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Erwin, D. H., 1990, The end-Permian mass extinction, Annu. Rev. Ecol. Syst. 21:69–91.

    Article  Google Scholar 

  • Farrell, B. D., 1998, “Inordinate fondness” explained: Why are there so many beetles?, Science 281:555–558.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Flower, J. W., 1964, On the origin of flight in insects, J. Insect Physiol. 10:81–88.

    Article  Google Scholar 

  • Gaunt, M. W., and Miles, M. A., 2002, An insect molecular clock dates the origin of insects and accords with palaeontological and biogeographic landmarks, Mol. Biol. Evol. 19:748–761.

    PubMed  CAS  Google Scholar 

  • Giles, E. T., 1963, The comparative external morphology and affinities of the Dermaptera, Trans. R. Entomol. Soc. Lond. 115:95–164.

    Google Scholar 

  • Hamilton, K. G. A., 1971, 1972, The insect wing, Parts 1 and IV, J. Kans. Entomol. Soc. 44:421–433; 45:295-308.

    Google Scholar 

  • Hasenfuss, I., 2002, A possible evolutionary pathway to insect flight starting from lepismatid organization, J. Zool. Syst. Evol. Res. 40:65–81.

    Article  Google Scholar 

  • Hennig, W., 1981, Insect Phylogeny, Wiley, New York.

    Google Scholar 

  • Heslop-Harrison, G., 1958, On the origin and function of the pupal stadia in holometabolous Insecta, Proc. Univ. Durham Philos. Soc. Ser. A 13:59–79.

    Google Scholar 

  • Hinton, H. E., 1958, The phylogeny of the panorpoid orders, Annu. Rev. Entomol. 3:181–206.

    Article  Google Scholar 

  • Hinton, H. E., 1963a, Discussion: The origin of flight in insects, Proc. R. Entomol. Soc. Lond. Ser. C 28:23–32.

    Google Scholar 

  • Hinton, H. E., 1963b, The origin and function of the pupal stage, Proc. R. Entomol. Soc. Lond. Ser. A 38:77–85.

    Google Scholar 

  • Hovmöller, R., Pape, T., and Källersö, M., 2002, The Palaeoptera problem: Basal pterygote phylogeny inferred from 18S and 28S rDNA sequences, Cladistics 18:313–323.

    Google Scholar 

  • Kamp, J. W., 1973, Numerical classification of the orthopteroids, with special reference to the Grylloblattodea, Can. Entomol. 105:1235–1249.

    Article  Google Scholar 

  • Kevan, D. K. McE., 1986, A rationale for the classification of orthopteroid insects—The saltatorial orthopteroids or grigs—one order or two? Proc. Fourth Triennial Meet. Pan-Am. Acridol. Soc., pp.49–67.

    Google Scholar 

  • Kevan, P. G., and Baker, H. G., 1999, Insects on flowers, in: Ecological Entomology, 2nd ed. (C. B. Huffaker and A. P. Gutierrez, eds.), Wiley, New York.

    Google Scholar 

  • Kevan, P. G., Chaloner, W. G., and Savile, D. B. O., 1975, Interrelationships of early terrestrial arthropods and plants, Palaeontology 18:391–417.

    Google Scholar 

  • Kingsolver, J. G., and Koehl, M. A. R., 1985, Aerodynamics, thermoregulation, and the evolution of insect wings: Differential scaling and evolutionary change, Evolution 39:488–504.

    ISI  Google Scholar 

  • Kingsolver, J. G., and Koehl, M. A. R., 1994, Selective factors in the evolution of insect wings, Annu. Rev. Entomol. 39:425–451.

    Article  Google Scholar 

  • Klass, K.-D., Zompro, O., Kristensen, N. P., and Adis, J., 2002, Mantophasmatodea: A new insect order with extant members in the Afrotropics, Science 296:1456–1459.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Kristensen, N. P., 1981, Phylogeny of insect orders, Annu. Rev. Entomol. 26:135–157.

    Article  Google Scholar 

  • Kristensen, N. P., 1984, Studies on the morphology and systematics of primitive Lepidoptera (Insecta), Steensrrupia 10:141–191.

    Google Scholar 

  • Kristensen, N. P., 1989, Insect phylogeny based on morphological evidence, in: The Hierarchy of Life (B. Fernholm, K. Bremer, and H. Jomvall, eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Kristensen, N. P., 1991, Phylogeny of extant hexapods, in: The Insects of Australia, 2nd ed., Vol. I (CSIRO, ed.), Melbourne University Press, Carlton, Victoria.

    Google Scholar 

  • Kristensen, N. P., 1995, Forty years insect phylogenetic systematics. Hennig’s ‘Kritische Bemerkungen...’ and subsequent developments, Zoologische Beiträge NF 36:83–124.

    Google Scholar 

  • Kristensen, N. P., 1998, The groundplan and basal diversification of the hexapods, in: Arthropod Relationships (R. A. Fortey and R. H. Thomas, eds.), Chapman and Hall, London.

    Google Scholar 

  • Kukalová-Peck, J., 1978, Originand evolution of insect wings and their relation to metamorphosis, as documented by the fossil record, J. Morphol. 156:53–126.

    Google Scholar 

  • Kukalová-Peck, J., 1983, Origin of the insect wing and wing articulation from the arthropodan leg, Can. J. Zool. 61:1618–1669.

    Google Scholar 

  • Kukalová-Peck, J., 1985, Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects(Insecta, Ephemerida), Can. J. Zool. 63:933–955.

    Google Scholar 

  • Kukalová-Peck, J., 1987, New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground plan, and the role of thoracic side lobes in the origin of wings (Insecta), Can. J. Zool. 65:2327–2345.

    Article  Google Scholar 

  • Kukalová-Peck, J., 1991, Fossil history and the evolution of hexapod structures, in: The Insects of Australia, 2nd ed., Vol. I (CSIRO, ed.), Melbourne University Press, Carlton, Victoria.

    Google Scholar 

  • Kukalová-Peck, J., 1998, Arthropod phylogeny and ‘basal’ morphological structures, in: Arthropod Relationships (R. A. Fortey and R. H. Thomas, eds.), Chapman and Hall, London.

    Google Scholar 

  • Kukalová-Peck, J., and Brauckmann, C., 1990, Wing folding in pterygote insects, and the oldest Diaphanopterodea from the early Late Carboniferous of West Germany, Can. J. Zool. 68:1104–1111.

    Google Scholar 

  • Kukalová-Peck, J., and Brauckmann, C., 1992, Most Paleozoic Protorthoptera are ancestral hemipteroids: Major wing braces as clues to a new phylogeny of Neoptera (Insecta), Can. J. Zool. 70:2452–2473.

    Google Scholar 

  • Kukalová-Peck, J., and Lawrence, J. F., 1993, Evolution of the hind wing in Coleoptera, Can. Entomol. 125:181–258.

    Article  Google Scholar 

  • Kukalová-Peck, J., and Lawrence, J. F., 2004, Relationships among coleopteran suborders and major endoneopteran lineages: Evidence from hind wing characters, Eur. J. Entomol. 101:95–144.

    Google Scholar 

  • Labandeira, C. C., and Sepkoski, J. J., Jr., 1993, Insect diversity in the fossil record, Science 261:310–315.

    PubMed  CAS  ISI  Google Scholar 

  • Labandeira, C. C., Beall, B. S., and Heuber, F. M., 1988, Early insect diversification: Evidence from a Lower Devonian fossil from Quebec, Science 242:913–916.

    ISI  Google Scholar 

  • Marden, J. H., and Kramer, M. G., 1994, Surface-skimming stoneflies: A possible intermediate stage in insect flight evolution, Science 266:427–430.

    CAS  ISI  PubMed  Google Scholar 

  • Marden, J. H., and Thomas, M. A., 2003, Rowing locomotion by a stonefly that possesses the ancestral pterygote condition of co-occurring wings and abdominal gills, Biol. J. Linn. Soc. 79:341–349.

    Article  Google Scholar 

  • Martynov, A. V., 1938, Etudes sur l’histoire géologique et de phylogénie des ordres des insectes (Pterygota), 1-3e. partie, Palaeoptera et Neoptera-Polyneoptera, Trav. Inst. Paléont. Acad. Sci. URSS, pp. 1–150.

    Google Scholar 

  • Peck, S. B., and Munroe, E., 1999, Biogeography and evolutionary history: Wide-scale and long-term patterns of insects, in: Ecological Entomology, 2nd ed. (C. B. Huffaker and A. P. Gutierrez, eds.), Wiley, New York.

    Google Scholar 

  • Rasnitsyn, A. P., 1981, A modified paranotal theory of insect wing origin, J. Morphol. 168:331–338.

    Article  Google Scholar 

  • Rasnitsyn, A. P., and Quicke, D. L. J. (eds.), 2002, History of Insects, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ross, H. H., 1955, Evolution of the insect orders. Entomol. News 66:197–208.

    Google Scholar 

  • Ross, H. H., 1965, ATextbook of Entomology, 3rd ed., Wiley, New York.

    Google Scholar 

  • Ross, H. H., 1967, The evolution and past dispersal of the Trichoptera, Annu. Rev. Entomol. 12:169–206.

    Article  Google Scholar 

  • Sharov, A. G., 1966, Basic Arthropodan Stock, Pergamon Press, Elmsford, NY.

    Google Scholar 

  • Shear, W. A., and Kukalová-Peck, J., 1990, The ecology of Paleozoic terrestrial arthropods: The fossil evidence, Can. J. Zool. 68:1807–1834.

    Article  Google Scholar 

  • Shear, W. A., Bonamo, P. M., Grierson, J. D., Rolfe, W. D. I., Smith, E. L., and Norton, R. A., 1984, Early land animals in North America: Evidence from Devonian Age arthropods from Gilboa, New York, Science 224:492–494.

    ISI  PubMed  Google Scholar 

  • Smart, J., and Hughes, N. F., 1973, The insect and the plant: Progressive palaeoecological integration, Symp. R. Entomol. Soc. 6:143–155.

    Google Scholar 

  • Storozhenko, S. Y., 1997, Fossil history and phylogeny of orthopteroid insects, in: The Bionomics of Grasshoppers, Katydids and Their Kin (S. K. Gangwere, M. C. Muralirangan, and M. Muralirangan, eds.), CAB International, Wallingford, U.K.

    Google Scholar 

  • Thomas, M. A., Walsh, K. A., Wolf, M. R., McPheron, B. A., and Marden, J. H., 2000, Molecular phylogenetic analysis of evolutionary trends in stonefly wing structure and locomotor behavior, Proc. Natl. Acad. Sci. U S A 97:13178–13183.

    PubMed  CAS  Google Scholar 

  • Truman, J. W., and Riddiford, L. M., 1999, The origins of insect metamorphosis, Nature 401:447–452.

    Article  PubMed  CAS  ISI  Google Scholar 

  • Truman, J. W., and Riddiford, L. M., 2002, Endocrine insights into the evolution of metamorphosis in insects, Annu. Rev. Entomol. 47:467–500.

    Article  PubMed  CAS  Google Scholar 

  • Weesner, F. M., 1960, Evolution and biology of termites, Annu. Rev. Entomol. 5:153–170.

    Article  Google Scholar 

  • Whalley, P. E. S., 1979, New species of Protorthoptera and Protodonata (Insecta) from the Upper Carboniferous of Britain, with a comment on theorigin of wings, Bull. Br. Mus. Nat. Hist. (Geol.) 32:85–90.

    Google Scholar 

  • Wheeler, W. C., 1989, The systematics of insect ribosomal DNA, in: The Hierarchy of Life (B. Fernholm, K. Bremer, and H. Jörnvall, eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Wheeler, W. C., Whiting, M., Wheeler, Q. D., and Carpenter, J. M., 2001, The phylogeny of the extant hexapod orders, Cladistics 17:113–169.

    ISI  Google Scholar 

  • Whiting, M., 1998, Phylogenetic position of the Strepsiptera: Review of molecular and morphological evidence, Int. J. Insect Morphol. Embryol. 27:53–60.

    Google Scholar 

  • Wigglesworth, V. B., 1963a, Origin of wings in insects, Nature (London) 197:97–98.

    Google Scholar 

  • Wigglesworth, V. B., 1963b, Discussion: The origin of flight in insects, Proc. R. Entomol. Soc. Lond. Ser. C 28:23–32.

    Google Scholar 

  • Wigglesworth, V. B., 1973, Evolution of insect wings and flight, Nature (London) 246:127–129.

    Article  Google Scholar 

  • Wigglesworth, V. B., 1976, The evolution of insect flight, Symp. R. Entomol. Soc. Lond. 7:255–269.

    Google Scholar 

  • Willmann, R., 1989, Rediscovered: Permotipula patricia, the oldest known fly, Naturwissenschaften 76:375–377.

    Article  ISI  Google Scholar 

  • Willmann, R., 1998, Advances and problems in insect phylogeny, in: Arthropod Relationships (R. A. Fortey and R. H. Thomas, eds.), Chapman and Hall, London.

    Google Scholar 

  • Wootton, R. J., 1976, The fossil record and insect flight, Symp. R. Entomol. Soc. Lond. 7:235–254.

    Google Scholar 

  • Wootton, R. J., 1981, Palaeozoic insects, Annu. Rev. Entomol. 26:319–344.

    Article  Google Scholar 

  • Wootton, R. J., 1986, The origin of insect flight: Where are we now? Antenna 10:82–86.

    Google Scholar 

  • Wootton, R. J., 2001, How insect wings evolved, in: Insect Movement: Mechanisms and Consequences (I. P. Woiwod, D. R. Reynolds, and C. D. Thomas, eds.), CAB International, Wallingford, U.K.

    Google Scholar 

  • Wootton, R. J., and Ellington, C. P., 1991, Biomechanics and the origin of insect flight, in: Biomechanics in Evolution (J. M. Y. Rayner and R. J. Wootton, eds.), Cambridge University Press, London.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). Insect Diversity. In: Entomology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3183-1_2

Download citation

Publish with us

Policies and ethics