Skip to main content

Scalar Fields in Particle Physics in Cosmology

  • Conference paper
Particle Physics and Cosmology: The Interface

Part of the book series: NATO Science Series ((NAII,volume 188))

  • 564 Accesses

Abstract

We review the role of scalar fields in theoretical models of high energy and cosmology. We discuss two general classes of light scalar fields: i) Goldstone bosons (and pseudo-Goldstone bosons) associated with the spontaneous breaking of symmetry, ii) moduli fields associated with the flat directions of the scalar potential in supersymmetric theorie. The latter are discussed in particular in the context of extra dimensions. Gravitational constraints are discussed. The potential role of a scalar fields in cosmology investigated: a quantitative analysis of their in path in the inflation scenario as well as in the understanding of dark energy is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Lee and C. Quigg and H. Thacker, Phys. Rev. D16 (1977) 1519

    Google Scholar 

  2. W. Marciano and G. Valencia and S. Willenbrock, Phys. Rev., D40 (1989) 1725–1729

    Google Scholar 

  3. M. Chanowitz and M.K. Gaillard, Nucl. Phys. B261 (1985) 379–431

    Article  Google Scholar 

  4. N. Cabibbo and L. Maiani and G. Parisi and R. Petronzio, Nucl. Phys. B158 (1979) 295–305

    Article  Google Scholar 

  5. M. Lindner, Z. Phys., C31 (1986) 295–300

    Google Scholar 

  6. E. Gildener, Phys. Rev. D14 (1976) 167

    Google Scholar 

  7. S. Weinberg, Phys. Rev. D19 (1979) 1277

    Google Scholar 

  8. L. Susskind, Phys. Rev. D20 (1979)

    Google Scholar 

  9. M. Veltman, Nucl. Phys., (1981)

    Google Scholar 

  10. C. Kolda and H. Murayama, JHEP 0007 (2000) 035

    Article  Google Scholar 

  11. G. ‘t Hooft, Recent developments in gauge theories (NATO ASI Series B: Physics Vol. 59 (1979) Plenum Press

    Google Scholar 

  12. J. Goldstone, Nuovo Cimento, 19 (1961) 154

    Google Scholar 

  13. C.G. Callan and S. Coleman and R. Jackiw, Ann. Phys. (N.Y.) 59 (1970) 42

    Article  Google Scholar 

  14. N. Arkani-Hamed and A.G. Cohen and E. Katz and A.E. Nelson, JHEP 0207 (2002) 034

    Article  Google Scholar 

  15. C. Csaki and Hubisz and Kribs and Meadle and J. Terning, Phys. Rev. D68 (2003) 035009 [arXiv:hep-ph/0303236]

    Google Scholar 

  16. P. Binétruy and G. Dvali and R. Kallosh and A. van Proeyen, Class. Quant. Grev., 21 (2004) 3137

    Article  Google Scholar 

  17. T. Kaluza, Sitzungsber. Preuss Akad. Wiss. Berlin Math. Phys. (1921)

    Google Scholar 

  18. O. Klein, Z. Phys., 37 (1926) 895

    Article  Google Scholar 

  19. E. Witten, Nucl. Phys., B268 (1986) 79

    Article  Google Scholar 

  20. E. Martinec, Phys. Lett., B171 (1986) 189

    Google Scholar 

  21. M. Dine and N. Seiberg, Phys. Rev. Lett., 57 (1986) 2625

    Article  PubMed  Google Scholar 

  22. A. Einstein, Sitzungsber. Preuss. Akad. Wiss., ”phus.-math. Klasse VI”, (1917) 142

    Google Scholar 

  23. A.H. Guth, Phys. Rev. D23 (1981) 347

    Google Scholar 

  24. L.P. Grishchuk and Y.V. Sidorov, Phys. Rev., D42 (1990) 3413

    Google Scholar 

  25. C.M. Will, Theory and experiment in gravitational physics, Cambridge University Press, 1993

    Google Scholar 

  26. T. Damour and K. Nordtvedt, Phys. Rev. Lett., 70 (1993) 2217–2219

    PubMed  Google Scholar 

  27. P.A.M. Dirac, Nature (London), 139 (1937) 323

    Google Scholar 

  28. P.A.M. Dirac, Proc. Roy. Soc. London, A165 (1938) 198

    Google Scholar 

  29. J.-Ph. Uzan, Rev. Mod. Phys., 75 (2003) 403

    Article  Google Scholar 

  30. T. Damour and F.J. Dyson, Nucl. Phys., B480 (1996) 37

    Article  Google Scholar 

  31. G.D. Coughlan and W. Fischler and E.W. Kolb and S. Raby and G.G. Ross, Phys. Lett. B131 (1983) 59–64

    Google Scholar 

  32. A.S. Goncharov and A.D. Linde and M.J. Visotsky, Phys. Lett., B147 (1984) 279–283

    Google Scholar 

  33. J. Ellis and D.V. Nanopoulos and M. Quiros, Phys. Lett. B174 (1986) 176–182

    Google Scholar 

  34. A. Cohen and D. Kaplan and A. Nelson, Phys. Lett. B388 (1996) 588–598

    Google Scholar 

  35. E.D. Stewart, Phys. Rev. D51 (1995) 6847–6853

    Google Scholar 

  36. P. Binétruy and G. Dvali, Phys. Lett. B388 (1996) 241

    Google Scholar 

  37. E. Halyo, Phys. Lett., B387 (1996) 43

    Google Scholar 

  38. C. Wetterich, Nucl. Phys., B302 (1988) 668

    Article  Google Scholar 

  39. B. Ratra and P.J.E. Peebles, Phys. Rev., D37 (1988) 3406

    Google Scholar 

  40. R.R. Caldwell and R. Dave and P.J. Steinhardt, Phys. Rev. Lett., 75 (1995) 2077

    Article  PubMed  Google Scholar 

  41. J. Frieman and C. Hill and A. Stebbins and I. Waga, Phys. Rev. Lett., 75 (1995) 2077

    Article  PubMed  Google Scholar 

  42. I. Zlatev and L. Wang and P.J. Steinhardt, Phys. Rev. Lett., 82 (1999) 896

    Article  Google Scholar 

  43. C. Armendariz-Pico and V. Mukhanov and P.J. Steinhardt, Phys. Rev. Lett. 85 (2000) 4438–4431

    Article  PubMed  Google Scholar 

  44. P. Binétruy, Phys. Rev., D60 (1999) 063502

    Google Scholar 

  45. S.M. Carroll, Phys. Rev. Lett., 81 (1998) 3067

    Article  Google Scholar 

  46. C. Kolda and D. Lyth, Phys. Lett., B458 (1999) 197

    Google Scholar 

  47. P. Brax and J. Martin, Phys. Lett. B468 (1999) 40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Binetruy, P. (2005). Scalar Fields in Particle Physics in Cosmology. In: Kazakov, D., Smadja, G. (eds) Particle Physics and Cosmology: The Interface. NATO Science Series, vol 188. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3161-0_6

Download citation

Publish with us

Policies and ethics