Skip to main content

Supersymmetric Extension of the Standard Model

  • Conference paper
Particle Physics and Cosmology: The Interface

Part of the book series: NATO Science Series ((NAII,volume 188))

  • 553 Accesses

Abstract

The present lectures contain an introduction to supersymmetry, a new symmetry that relates bosons and fermions, in particle physics. The motivation to introduce supersymmetry is discussed. The main notions of supersymmetry are introduced. The supersymmetric extension of the Standard Model — the Minimal Supersymmetric Standard Model — is considered in more detail. Phenomenological features of the MSSM as well as possible experimental signatures of SUSY are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. A. Golfand and E. P. Likhtman, JETP Letters 13 (1971) 452; D. V. Volkov and V. P. Akulov, JETP Letters 16 (1972) 621; J. Wess and B. Zumino, Phys. Lett. B49 (1974) 52.

    Google Scholar 

  2. P. Fayet and S. Ferrara, Phys. Rep. 32 (1977) 249; M. F. Sohnius, Phys. Rep. 128 (1985) 41; H. P. Nilles, Phys. Rep. 110 (1984) 1; H. E. Haber and G. L. Kane, Phys. Rep. 117 (1985) 75; A. B. Lahanas and D. V. Nanopoulos, Phys. Rep. 145 (1987) 1.

    Article  Google Scholar 

  3. J. Wess and J. Bagger, ”Supersymmetry and Supergravity”, Princeton Univ. Press, 1983.

    Google Scholar 

  4. S. J. Gates, M. Grisaru, M. Roček and W. Siegel, ”Superspace or One Thousand and One Lessons in Supersymmetry”, Benjamin & Cummings, 1983.

    Google Scholar 

  5. S. Coleman and J. Mandula, Phys. Rev. 159 (1967) 1251.

    Article  Google Scholar 

  6. G. G. Ross, ”Grand Unified Theories”, Benjamin & Cummings, 1985.

    Google Scholar 

  7. D. E. Groom et al., “Review of Particle Physics”, Eur. Phys. J. C15 (2000) 1.

    Google Scholar 

  8. U. Amaldi, W. de Boer and H. Fürstenau, Phys. Lett. B260 (1991) 447.

    Google Scholar 

  9. C.L. Bennett et al., 2003, ApJS, 148, 1

    Article  Google Scholar 

  10. M. B. Green, J. H. Schwarz and E. Witten, ”Superstring Theory”, Cambridge, UK: Univ. Press, 1987. Cambridge Monographs On Mathematical Physics.

    Google Scholar 

  11. F. A. Berezin, ”The Method of Second Quantization”, Moscow, Nauka, 1965.

    Google Scholar 

  12. P. Fayet and J. Illiopoulos, Phys. Lett. B51 (1974) 461.

    Google Scholar 

  13. L. O’Raifeartaigh, Nucl. Phys. B96 (1975) 331.

    Article  Google Scholar 

  14. H. E. Haber, ”Introductory Low-Energy Supersymmetry”, Lectures given at TASI 1992, (SCIPP 92/33, 1993), hep-ph/9306207. D. I. Kazakov, ”Beyond the Standard Model (In search of supersymmetry)”, Lectures at the European school on high energy physics, CERN-2001-003, hep-ph/0012288. [15]http://atlasinfo.cern.ch/Atlas/documentation/EDUC/physicsl4.html

    Google Scholar 

  15. P. Fayet, Nucl. Phys. B90(1975) 104; A.Salam and J.Srathdee, Nucl. Phys. B87(1975) 85.

    Article  Google Scholar 

  16. L. Hall, J. Lykken and S. Weinberg, Phys. Rev. D27 (1983) 2359; S. K. Soni and H. A. Weldon, Phys. Lett. B126 (1983) 215; I. Affleck, M. Dine and N. Seiberg, Nucl. Phys. B256 (1985) 557.

    Google Scholar 

  17. H. P. Nilles, Phys. Lett. B115 (1982) 193; A. H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49 (1982) 970; Nucl. Phys. B227 (1983) 121; R. Barbieri, S. Ferrara and C. A. Savoy, Phys. Lett. B119 (1982) 343.

    Google Scholar 

  18. M. Dine and A. E. Nelson, Phys. Rev. D48 (1993) 1277, M. Dine, A. E. Nelson and Y. Shirman, Phys. Rev. D51 (1995) 1362.

    Google Scholar 

  19. L. Randall and R. Sundrum, Nucl. Phys. B557 (1999) 79; G. F. Giudice, M. A. Luty, H. Murayama and R. Rattazzi, JHEP, 9812 (1998) 027.

    Article  Google Scholar 

  20. D. E. Kaplan, G. D. Kribs and M. Schmaltz, Phys. Rev. D62 (2000) 035010; Z. Chacko, M. A. Luty, A. E. Nelson and E. Ponton, JHEP, 0001 (2000) 003.

    Google Scholar 

  21. M. E. Peskin, ”Theoretical summary lecture for EPS HEP99”, hep-ph/0002041.

    Google Scholar 

  22. G. G. Ross and R. G. Roberts, Nucl. Phys. B377 (1992) 571. V. Barger, M. S. Berger and P. Ohmann, Phys. Rev. D47 (1993) 1093.

    Article  Google Scholar 

  23. W. de Boer, R. Ehret and D. Kazakov, Z. Phys. C67 (1995) 647; W. de Boer et al., Z. Phys. C71 (1996) 415.

    Google Scholar 

  24. L. E. Ibáñez, C. Lopez and C. Muñoz, Nucl. Phys. B256 (1985) 218.

    Google Scholar 

  25. W. Barger, M. Berger, P. Ohman, Phys. Rev. D49 (1994) 4908.

    Google Scholar 

  26. V. Barger, M.S. Berger, P. Ohmann and R. Phillips, Phys. Lett. B314 (1993) 351. P. Langacker and N. Polonsky, Phys. Rev. D49 (1994) 1454. S. Kelley, J. L. Lopez and D.V. Nanopoulos, Phys. Lett. B274 (1992) 387.

    Google Scholar 

  27. S. Ahmed et al. (CLEO Collaboration), CLEO CONF 99/10, hep-ex/9908022.

    Google Scholar 

  28. R. Barate et al. (ALEPH Collaboration), Phys. Lett. B429 (1998) 169.

    Google Scholar 

  29. W. de Boer, M. Huber, C. Sander, D.I. Kazakov, Phys.Lett. B515 (2001) 283.

    Google Scholar 

  30. ALEPH Collaboration, Phys.Lett. B499 (2001) 67.

    Google Scholar 

  31. S. Abel et al. [SUGRA Working Group Collaboration], Report of the SUGRA working group for run II of the Tevatron, hep-ph/0003154.

    Google Scholar 

  32. M. Drees and M. M. Nojiri, Phys. Rev. D47 (1993) 376; J. L. Lopez, D. V. Nanopoulos and H. Pois, Phys. Rev. D47 (1993) 2468; P. Nath and R. Arnowitt, Phys. Rev. Lett. 70 (1993) 3696.

    Google Scholar 

  33. W. de Boer, H.J. Grimm, A. Gladyshev, D. Kazakov, Phys. Lett. B438 (1998) 281.

    Google Scholar 

  34. W. de Boer, M. Huber, A. Gladyshev, D. Kazakov, Eur. Phys. J. C20 (2001) 689.

    Google Scholar 

  35. S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Lett. B455 (1999) 179; Eur. Phys. J. C9 (1999) 343.

    Google Scholar 

  36. T. Kamon, hep-ex/0301019, Proc. of IX Int. Conf. ”SUSY-01”, WS 2001, p.196.

    Google Scholar 

  37. CDF Collaboration (D. Acosta et al.), Phys.Rev.Lett. 90 (2003) 251801; CDF Collaboration (T. Affolder et al.), Phys.Rev.Lett. 87 (2003) 251803.

    Article  PubMed  Google Scholar 

  38. http://CMSinfo.cern.ch/Welcome.html/CMSdocuments/CMSplots

    Google Scholar 

  39. N.V. Krasnikov and V.A. Matveev, ”Search for new physics at LHC”, hep-ph/0309200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Kazakov, D. (2005). Supersymmetric Extension of the Standard Model. In: Kazakov, D., Smadja, G. (eds) Particle Physics and Cosmology: The Interface. NATO Science Series, vol 188. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3161-0_11

Download citation

Publish with us

Policies and ethics