Skip to main content
  • 565 Accesses

Abstract

This chapter presents the effects of polynomial degrees on the hierarchical segmentation method (HSM) for approximating functions. HSM uses a novel hierarchy of uniform segments and segments with size varying by powers of two. This scheme enables us to approximate non-linear regions of a function particularly well. The degrees of the polynomials play an important role when approximating functions with HSM: the higher the degree, the fewer segments are needed to meet the same error requirement. However, higher degree polynomials require more multipliers and adders, leading to higher circuit complexity and more delay. Hence, there is a tradeoff between table size, circuit complexity and delay. We explore these tradeoffs with four functions: \(\sqrt { - \log (x)} \), x log(x), a high order rational function and cos(πx/2). We present results for polynomials up to the fifth order for various operand sizes between 8 and 24 bits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Cao, B.W.Y. We and J. Cheng, “High-performance architectures for elementary function generation”, Proc. 15th IEEE Symp. on Comput. Arith., 2001.

    Google Scholar 

  2. J.N. Coleman, E. Chester, C.I. Softley and J. Kadlec, “Arithmetic on the European logarithmic microprocessor”, IEEE Trans. Comput. Special Edition on Comput. Arith., vol. 49, no. 7, pp. 702–715, 2000.

    Google Scholar 

  3. D. Das Sarma and D.W. Matula, “Faithful bipartite rom reciprocal tables”, Proc. IEEE Symp. on Computer Arithmetic, pp. 17–28, 1995.

    Google Scholar 

  4. H. Henkel, “Improved Addition for the Logarithmic Number System”, IEEE Trans. on Acoustics, Speech, and Signal Process., vol. 37, no. 2, pp. 301–303, 1989.

    Google Scholar 

  5. C.L. Lawson, “Characteristic properties of the segmented rational minimax approximation problem”, Numer. Math., vol. 6, pp. 293–301, 1964.

    Article  Google Scholar 

  6. D. Lee, W. Luk, J. Villasenor and P.Y.K. Cheung, “A hardware Gaussian noise generator for channel code evaluation”, Proc. IEEE Symp. on Field-Prog. Cust. Comput. Mach., pp. 69–78, 2003.

    Google Scholar 

  7. D. Lee, W. Luk, J. Villasenor and P.Y.K. Cheung, “Hardware function evaluation using non-linear segments”, Proc. Field-Prog. Logic and Applications, LNCS 2778, Springer-Verlag, pp. 796–807, 2003.

    Google Scholar 

  8. D. Lee, W. Luk, J. Villasenor and P.Y.K. Cheung, “Hierarchical Segmentation Schemes for Function Evaluation”, Proc. IEEE Int. Conf. on Field-Prog. Tech., pp. 92–99, 2003.

    Google Scholar 

  9. D.M. Lewis, “Interleaved memory function interpolators with application to an accurate LNS arithmetic unit”, IEEE Trans. on Comput., vol. 43, no. 8, pp. 974–982, 1994.

    Article  Google Scholar 

  10. O. Mencer, N. Boullis, W. Luk and H. Styles, “Parameterized function evaluation for FPGAs”, Proc. Field-Prog. Logic and Applications, LNCS 2147, Springer-Verlag, pp. 544–554, 2001.

    Google Scholar 

  11. J.M. Muller, Elementary Functions: Algorithms and Implementation, Birkhauser Verlag AG, 1997.

    Google Scholar 

  12. A.S. Noetzel, “An interpolating memory unit for function evaluation: analysis and design”, IEEE Trans. Comput., vol. 38, pp. 377–384, 1989.

    Article  Google Scholar 

  13. J.A Piñeiro, J.D. Bruguera and J.M. Muller, “Faithful powering computation using table look-up and a fused accumulation tree”, Proc. 15th IEEE Symp. on Comput. Arith., 2001.

    Google Scholar 

  14. M.J. Schulte and J.E. Stine, “Symmetric bipartite tables for accurate function approximation”, Proc. 13th IEEE Symp. on Comput. Arith., vol. 48, no. 9, pp. 175–183, 1997.

    Article  Google Scholar 

  15. J.E. Stine and M.J. Schulte, “The symmetric table addition method for accurate function approximation”, J. of VLSI Signal Processing, vol. 21, no. 2, pp. 167–177, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Lee, DU., Luk, W., Villasenor, J.D., Cheung, P.Y. (2005). The Effects of Polynomial Degrees. In: Lysaght, P., Rosenstiel, W. (eds) New Algorithms, Architectures and Applications for Reconfigurable Computing. Springer, Boston, MA. https://doi.org/10.1007/1-4020-3128-9_24

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3128-9_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-3127-4

  • Online ISBN: 978-1-4020-3128-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics