Skip to main content

Two State Transition Model of the Magnetosphere

  • Chapter
  • 827 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 321))

Abstract

The substorm onset as a state transition is investigated from a resistive magnetohydrodynamic (MHD) simulation. The simulation uses the finite volume totalvariation diminishing (TVD) scheme on an unstructured grid system to evaluate the magnetosphere-ionosphere (M–I) coupling effect more precisely and to reduce the numerical viscosity in the near-earth plasma sheet. The calculation started from a stationary solution under a northward interplanetary magnetic field (IMF) condition with non-zero IMF B y. After a southward turning of the IMF, the simulation results show the progress of plasma sheet thinning in the magnetosphere. This thinning is promoted by the drain of closed flux from the plasma sheet occurring under the enhanced convection. In this stage, the reclosure process of open field lines in the plasma sheet, which determines the flux piling up from the midtail to the near-earth plasma sheet, is not so effective, since it is still controlled by the remnant of northward IMF. The substorm onset occurs as an abrupt change of pressure distribution in the near-earth plasma sheet and an intrusion of convection flow into the inner magnetosphere. After the onset, the simulation results reproduce both the dipolarization in the near-earth tail and the near-earth neutral line (NENL) at the midtail, together with plasma injection into the inner magnetosphere and an enhancement of the nightside field-aligned current (FAC). During the dipolarization process, the magnetosphere changes from the force balance in the z direction to the configuration of force balance in the x direction. Thus, the dipolarization is not a mere pile up of the flux ejected from the NENL Associated with the establishment of force balance in the x direction, the pressure inside — 10 Re peaks to self-adjust the restored magnetic tension. It is concluded that the direct cause of these onset processes is the state (phase-space) transition of the convection system from a thinned state to a dipolarized state associated with a self-organizing criticality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-I., The development of the auroral substorm, Planet. Space Sci., 12, 273, 1964.

    Article  ADS  Google Scholar 

  • Angelopoulos, V., W. Baumjohann, C. F. Kenel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J.Walker, H. Luhr, and G. Paschmann, Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97, 4027, 1992.

    Article  ADS  Google Scholar 

  • Atkinson, G., A magnetosphere WAGS the tail model of substorms, in Magnetospheric substorms, Geophys. Monogr. Ser., vol. 64, edited by J. R. Kan, T. A. Potemra, S. Kokubun, and T. Iijima, p. 191, AGU, Washington, D.C., 1991.

    Google Scholar 

  • Baker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron, Neutral line model of substorms: Past results and present view, J. Geophys. Res., 101, 12,975, 1996.

    ADS  Google Scholar 

  • Baumjohann, W., G. Paschmann, and H. Luhr, Characteristics of high-speed ion flows in the plasma sheet, J. Geophys. Res., 95, 3801, 1990.

    Article  ADS  Google Scholar 

  • Chapman, S., and V. C. A. Ferraro, A new theory of magnetospheric storms, Part 1, The initial phase, J. Geophys. Res., 36, 77, 1931.

    Article  ADS  Google Scholar 

  • Chapman, S. C., N. W. Watkins, R. O. Dendy, P. Helander, and G. Rowlands, A simple avalanshe model as an analogue for magnetospheric activity, Geophys. Res. Lett., 25, 2397, 1998.

    Article  ADS  Google Scholar 

  • Crooker, N. U., J. G. Lyon, and J. A. Fedder, MHD model merging with IMF B y: Lobe cells, sunward polar cap convection, and overdraped lobes, J. Geophys. Res., 103, 9143, 1998.

    Article  ADS  Google Scholar 

  • Elphinstone, R. D., J. S. Murphree, and L. L. Cogger, What is a global auroral substorm, Rev. Geophys., 34, 169, 1996.

    Article  ADS  Google Scholar 

  • Fedder, J. A., S. P. Slinker, and J. G. Lyon, A comparison of global numerical simulation results to data for the January 27–28, geospace environment modeling challenge event, J. Geophys. Res., 103, 14,799, 1998.

    Article  ADS  Google Scholar 

  • Gombosi, T. I., K. G. Powell, and B. van Leer, Comment on “Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity” by Joachim Raeder, J. Geophys. Res., 105, 13,141, 2000.

    Article  ADS  Google Scholar 

  • Hashimoto, K., T. Kikuchi, and Y. Ebihara, Response of the magnetospheric convection to sudden IMF change as deduced from the evolution of partial ring currents, J. Geophys. Res., 107(A11), 1337, doi:10.1029/2001JA009228, 2002.

    Article  Google Scholar 

  • Kistler, L. M., E. Mobius, W. Baumjohann, and G. Paschmann, Pressure changes in the plasma sheet during substorm injection, J. Geophys. Res., 97, 2973, 1992.

    Article  ADS  Google Scholar 

  • Kivelson, M. G., and D. J. Southwood, Ionospheric traveling vortex generated by solar wind buffering of the magnetosphere, J. Geophys. Res., 96, 1661, 1991.

    Article  ADS  Google Scholar 

  • Lee, L. C., A review of magnetic reconnection: MHD models, in Physics of magnetopause, Geophys. Monogr. Ser., vol. 90, edited by P. Song et al., p. 139, AGU, Washington, D. C., 1995.

    Google Scholar 

  • Lopez, R. E., and A. T. Y. Lui, A multi-satellite case study of the expansion phase of a substorm current wedge in the near-Earth magnetotail, J. Geophys. Res., 95, 8009, 1990.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., Current disruption in the earth's magnetosphere: Observations and models, J. Geophys. Res., 101, 13,067, 1996.

    Article  ADS  Google Scholar 

  • Lyons, L. R., A new theory for magnetospheric substorms, J. Geophys. Res., 100, 19,069, 1995.

    Article  ADS  Google Scholar 

  • Lyons, L. R., G. T. Blanchard, J. C. Samson, R. P. Lepping, T. Yamamoto, and T. Moretto, Coordinated observation demonstrating external substorm triggering, J. Geophys. Res., 102, 27,039, 1997.

    Article  ADS  Google Scholar 

  • Nakamizo, A., and T. Iijima, A new perspective on magnetotail disturbances in terms of inherent diamagnetic processes, J. Geophys. Res. 108(A7), 1286, doi:10.1029/2002JA009400, 2003.

    Article  Google Scholar 

  • Nagai, T., K. Takahashi, H. Kawano, T. Yamamoto, S. Kokubun, and A. Nishida, Initial geotail survey of magnetic substorm signatures in the magnetotail, Geophys. Res. Lett., 25, 2991, 1994.

    Article  ADS  Google Scholar 

  • Ogino, T., R. J. Walker, M. Ashour-Abdalla, and J. M. Dawson, An MHD simulation of the effects of interplanetary magnetic field B y component on the interaction of the solar wind with the earth's magnetosphere during southward interplanetary magnetic field, J. Geophys. Res., 91, 10,029, 1986.

    ADS  Google Scholar 

  • Ohtani, S., K. Takahashi, T. Higuchi, A.T.Y. Lui, H. E. Spence, and J. F. Fennell, AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations, J. Geophys. Res., 103, 4671, 1998.

    Article  ADS  Google Scholar 

  • Parker, E. N., The alternative paradigm for magnetospheric physics, J. Geophys. Res., 101, 10,587, 1996.

    Article  ADS  Google Scholar 

  • Parker, E. N., Newton, Maxwell, and Magnetospheric Physics, in Magnetospheric current systems, Geophys. Monogr. Ser., vol. 118, edited by S. Ohtani et al., p. 1, AGU, Washington, D. C., 2000.

    Google Scholar 

  • Pulkkinen, T. I., D. N. Baker, M. Wiltberger, C. Goodrich, R. E. Lopez, and J. G. Lyon, Pseudobreakup and substorm onset: Observations and MHD simulations compared, J. Geophys. Res., 103, 14,847, 1998.

    ADS  Google Scholar 

  • Sergeev, V. A., R. J. Pellinen, and T. I. Pulkkinen, Steady magnetospheric convection: A review of recent results, Space Sci. Rev., 75, 551, 1996.

    Article  ADS  Google Scholar 

  • Shao, X, M. I. Sitnov, S. A. Sharma, K. Papadopoulos, C. C. Goodrich, P. N. Guzdar, G. M. Milikh, M. J. Wiltberger, J. G. Lyon, Phase transition-like behavior of magnetospheric substorms: Global MHD simulation results, J. Geophys. Res., 108(A1), doi:10.1029/2001JA009237, 2003.

    Google Scholar 

  • Siscoe, G. L., N. U. Crooker, G. M. Erickson, B. U. O. Sonnerup, K. D. Siebert, D. R. Weimer, W. W. White, and N. C. Maynard, Global geometry of magnetospheric currents inferred from MHD simulations, in Magnetospheric current systems, Geophys. Monogr. Ser., vol. 118, edited by S. Ohtani et al., p. 41, AGU, Washington, D. C., 2000.

    Google Scholar 

  • Sitnov, M. I., A. S. Sharma, K. Papadopoulos, D. Vassiliadis, J. A. Valdivia, A. J. Klimas, and D. N. Baker, Phase transition-like behavior of the magnetosphere during substorms, J. Geophys. Res., 105, 12,955, 2000.

    ADS  Google Scholar 

  • Takahashi, K., L. J. Zanetti, R. E. Lopez, R. W. McEntire, T. A. Potemra, and K. Yumoto, Disruption of the magnetotail current sheet observed by AMPTE/CCE, Geophys. Res. Lett., 14, 1019, 1987.

    Article  ADS  Google Scholar 

  • Tanaka, T., Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme, J. Geophys. Res., 98, 17251, 1993.

    Article  ADS  Google Scholar 

  • Tanaka, T., Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields, J. Comput. Phys., 111, 381, 1994.

    Article  MATH  ADS  Google Scholar 

  • Tanaka, T., Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes, J. Geophys. Res., 100, 12,057, 1995.

    ADS  Google Scholar 

  • Tanaka, T., Effects of decreasing ionospheric pressure on the solar wind interaction with non-magnetized planets, Earth Planets Space, 50, 259, 1998.

    ADS  Google Scholar 

  • Tanaka, T., Configuration of the magnetosphere-ionosphere convection system under northward IMF condition with non-zero IMF B y, J. Geophys. Res., 104, 14,683, 1999.

    ADS  Google Scholar 

  • Tanaka, T., Field-aligned current systems in the numerically simulated magnetosphere, in Magnetospheric current systems, Geophys. Monogr. Ser., vol. 118, edited by S. Ohtani et al., p. 53, AGU, Washington, D. C., 2000a.

    Google Scholar 

  • Tanaka, T., The state transition model of the substorm onset, J. Geophys. Res., 105, 21,081, 2000b.

    Article  ADS  Google Scholar 

  • Tanaka, T., IMF B y and auroral conductance effects on high-latitude ionospheric convection, J. Geophys. Res., 106, 24,505, 2001.

    ADS  Google Scholar 

  • Tanaka, T., Finite volume TVD scheme for magnetohydrodynamics on unstructured grids, in Space plasma simulation, Lecture notes in physics, edited by J. Buchner et al., p. 275, Springer, 2003a.

    Google Scholar 

  • Tanaka, T., Formation of magnetospheric plasma population regimes coupled with the dynamo process in the convection system, J. Geophys. Res., 108(A8), 1315, doi:10.1029/2002JA009668, 2003b.

    Article  Google Scholar 

  • Tanaka, T., and K. Murawski, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation, J. Geophys. Res., 102, 19,805, 1997.

    ADS  Google Scholar 

  • Tanaka, T., and H. Washimi, Solar cycle dependence of the heliospheric shape deduced from a global MHD simulation of the interaction process between a nonuniform time-dependent solar wind and the local interstellar medium, J. Geophys. Res., 104, 12,605, 1999.

    ADS  Google Scholar 

  • Tanaka, T., and H. Washimi, Formation of the three-ring structure around supernova 1987A, Science, 296, 321, 2002.

    Article  ADS  Google Scholar 

  • Tanaka, T., T. Obara, and M. Kunitake, Formation of the theta aurora by a transient convection during northward IMF, J. Geophys. Res., doi:10.1029/2003JA010271, in press, 2003.

    Google Scholar 

  • Watanabe, M., G. J. Sofko, D. A. Andre, T. Tanaka, and M. R. Hairson, Polar cap bifurcation during steady-state northward interplanetary magnetic field with |By| ∼ Bz, J. Geophys. Res., doi:10.1029/2003JA009944, in press, 2003.

    Google Scholar 

  • Yahnin, A., M. V. Malkov, V. A. Sergeev, R. J. Pellinen, O. Aulamo, S. Vennerstrom, E. Friis-Christensen, K. Lassen, C. Danielsen, J. D. Craven, C. Deehr, and L. A. Frank, Features of steady magnetospheric convection, J. Geophys. Res., 99, 4039, 1994.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Tanaka, T. (2005). Two State Transition Model of the Magnetosphere. In: Burton, W., et al. Nonequilibrium Phenomena in Plasmas. Astrophysics and Space Science Library, vol 321. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3109-2_5

Download citation

Publish with us

Policies and ethics