Skip to main content

Complexity and Topological Disorder in the Earth's Magnetotail Dynamics

  • Chapter
Nonequilibrium Phenomena in Plasmas

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 321))

Abstract

Recently, several observations suggested that the Earth's magnetospheric dynamics in response to solar wind changes may resemble the behavior of a complex system which operates out-of-equilibrium and near criticality. Here, we discuss the emergence of complexity and topological disorder in the magnetotail regions. In detail, we will show how several aspects regarding the multiscale nature of the magnetospheric response may be connected to the evolution of a complex topology of multiscale magnetic and plasma coherent structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-I. “Magnetospheric substorm, a model”, In Dryer, D., editor, Solar Terrestrial Physics, Part I. Pag. 131. D. Reidel, Norwell, Mass., 1972.

    Google Scholar 

  • Aktinson, G. “An approximate flow equation for geomagnetic flux tubes and its application to polar substorms”, Jour. Geophys. Res., 72: 5373, 1967.

    Article  ADS  Google Scholar 

  • Andersen, J. V., D. Sornette and K. Leung. “Tricritical behavior in rupture induced by disorder”, Phys. Rev. Lett., 78: 2140, 1997.

    Article  ADS  Google Scholar 

  • Angelopoulos, V., T. Mukai and S. Kokubun. “Evidence for intermittency in Earth's plasma sheet and implications for self-organized criticality”, Phys. Plasmas, 6: 4161, 1999.

    Article  ADS  Google Scholar 

  • Angelopoulos, V., F. S. Mozer, T. Mukai, K. Tsuruda, S. Kokubun and T.J. Hughes. “On the relationship between bursty flows, current disruption and substorms”, Geophys. Res. Lett., 26: 2841, 1999a.

    Article  ADS  Google Scholar 

  • Baker, D. N., A. J. Klimas, R. I. McPherron and J. Büchner. “The evolution from weak to strong geomagnetic activity: an interpretation in terms of deterministic chaos”, Geophys. Res. Lett., 17: 41, 1990.

    Article  ADS  Google Scholar 

  • Berker, A. N. “Critical behavior induced by quenched disorder”, Physica A, 194: 72, 1993.

    Article  ADS  Google Scholar 

  • Bruno, R., B. Bavassano, E. Pietropaolo, V. Carbone and P. Veltri. “Effects of intermittency on interplanetary velocity and magnetic field fluctuations”, Geophys. Res. Lett., 26: 3185, 1999.

    Article  ADS  Google Scholar 

  • Bruno, R., V. Carbone, P. Veltri, E. Pietropaolo and B. Bavassano “Identifying intermittency events in the solar wind”, Planet. Space Sci., 49: 1201, 2001.

    Article  ADS  Google Scholar 

  • Chang, T. “Low-dimensional behavior and symmetry breaking of stochastic systems near criticality: can these effects be observed in space and in the laboratory”, IEEE Trans, Plasma Phys., 20: 691, 1992.

    Article  ADS  Google Scholar 

  • Chang, T., D. D. Vevedensky and J. F. Nicoll “Differential renormalization-group generators for static and dynamic critical phenomena”, Phys. Rep., 217: 279, 1992.

    Article  MathSciNet  ADS  Google Scholar 

  • Chang, T. “Sporadic localized reconnections and multiscale intermittent turbulence in the magnetotail”, In Horvitz, J. L et al., editors, Geospace Mass and Energy Flow. Geophysical Monograph, Vol. 104., pag. 193. AGU, Washington DC, 1998.

    Google Scholar 

  • Chang, T. “Self-organized criticality, multifractal spectra, sporadic localized reconnections and intermittent turbulence in magnetotail”, Phys. Plasmas, 6: 4137, 1999a.

    Article  ADS  Google Scholar 

  • Chang, T. “Self-organized criticality, multi-fractal spectra, and intermittent merging of coherent structures in the magnetotail”, Astr. and Space Sci., 264: 303, 1999b.

    Article  MATH  ADS  Google Scholar 

  • Chang, T. “Colloid-like behavior and topological phase transitions in space plasmas: intermittent lowfrequency turbulence in the auroral zone”, Physica Scripta, T89: 80, 2001.

    Article  ADS  Google Scholar 

  • Chang, T., and C. C. Wu “Complexity and anomalous transport in space plasmas”, Phys. Plasmas, 9: 3679, 2002.

    Article  ADS  Google Scholar 

  • Chang, T., C. C. Wu and V. Angelopoulos. “Preferential acceleration of coherent magnetic structures and bursty bulk flows in Earth's magnetotail”, Physica Scripta, T98: 48, 2002.

    Article  ADS  Google Scholar 

  • Chang, T., S. W. Y. Tam, C. C. Wu and G. Consolini “Complexity, forced and/or self-organized criticality, and topological phase transitions in space plasmas”, Space Sci. Rev., 107: 425, 2003a.

    Article  ADS  Google Scholar 

  • Chang, T., S. W. Y. Tam, and C. C. Wu “Complexity induced anisotropic bimodal intermittent turbulence in space plasmas”, submitted to Phys. Plasmas, 2003b.

    Google Scholar 

  • Chapman, S. C., N. W. Watkins, R. O. Dendy, P. Helander and G. Rowlands “A simple avalanche model as an analogue for the magnetospheric activity”, Geophys. Res. Lett., 25: 2397, 1998.

    Article  ADS  Google Scholar 

  • Chapman, S. C., R. O. Dendy and G. Rowlands “A sandpile model with dual scaling regimes for laboratory, space, and astrophysical plasmas”, Phys. Plasmas, 6: 4169, 1999.

    Article  ADS  Google Scholar 

  • Consolini, G., M. F. Marcucci and M. Candidi “Multifractal structure of auroral electrojet index data”, Phys. Rev. Lett., 76: 4082, 1996.

    Article  ADS  Google Scholar 

  • Consolini, G., “Sandpile cellular automata and the magnetospheric dynamics”, In Aiello, S. et al., editors, Cosmic Physics in the Year 2000, Proceedings of VIII GIFCO Conference, pag. 123, SIF, Bologna, 1997.

    Google Scholar 

  • Consolini, G. and P. De Michelis “Non-Gaussian distribution of AE-index fluctuations. Evidence for time intermittency”, Geophys. Res. Lett., 25: 4087, 1998.

    Article  ADS  Google Scholar 

  • Consolini, G. and A. T. Y. Lui “Sign-singularity analysis of current dsruption”, Geophys. Res. Lett., 26: 1673, 1999.

    Article  ADS  Google Scholar 

  • Consolini, G. and A. T. Y. Lui “Symmetry Breaking and Nonlinear Wave-Wave Interaction in Current disruption: Possible evidence for a phase Transition”, In S. Ohtani et al., editors, Magnetospheric Current Systems. Geophysical Monograph, Vol. 118., pag. 395. AGU, Washington DC, 2000.

    Google Scholar 

  • Consolini, G. and P. De Michelis “A revised forest-fire cellular automaton for the nonlinear dynamics of the Earth's magnetotail”, Jour. Atmos. Solar Terr. Phys., 63: 1371, 2001.

    Article  ADS  Google Scholar 

  • Consolini, G. and T. Chang “Magnetic field topology and criticality in geotail dynamics: relevance to substorm phenomena”, Space Sci. Rev., 95: 309, 2001.

    Article  ADS  Google Scholar 

  • Consolini, G. and T. Chang “Complexity, magnetic field topology, criticality, and metastability in magnetotail dynamics”, Jour. Atmos. Solar Terr. Phys., 64: 541, 2002.

    Article  ADS  Google Scholar 

  • Consolini, G. “Self-organized criticality: a new paradigm for the magnetotail dynamics”, Fractals, 10: 275, 2002.

    Article  Google Scholar 

  • Deng, X. H. and H. Matsumoto “Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves”, Nature, 410: 557, 2001.

    Article  ADS  Google Scholar 

  • Farge, M. “Wavelet transforms and their applications to turbulence”, Ann. Rev. Fluid Mech., 24: 395, 1992.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Freeman, M. P., N. W. Watkins and D. J. Riley “Evidence for a solar wind origin of the power law burst lifetime distribution of AE indices”, Geophys. Res. Lett., 27: 1087, 2000.

    Article  ADS  Google Scholar 

  • Klimas, A. J., D. V. Vassiliadis, D. N. Baker and D. A. Roberts. “The organized nonlinear dynamics of the magnetosphere”, Jour. Geophys. Res., 101: 13089, 1996.

    Article  ADS  Google Scholar 

  • Klimas, A. J., Valdivia J. A., D. V. Vassiliadis, D. N. Baker, M. Hesse and J. Takalo. “Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet”, Jour. Geophys. Res., 105: 18765, 2000.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., R. E. Lopez, S.M. Krimigis, R. W. McEntire, L. J. Zanetti and T. A. Potemra, “A case study of magnetotail current sheet disruption and diversion”, Geophys. Res. Lett., 15: 721, 1988.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y. “A synthesis of magnetospheric substorm models”, Jour. Geophys. Res., 96: 1849, 1991.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y. “Current disruption in the Earth's magnetosphere: observations and models”, Jour. Geophys. Res., 101: 13067, 1996.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y. and A.-H. Najimi “Time-frequency decomposition of signals in a current disruption event”, Geophys. Res. Lett., 24: 3157, 1997.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., K. Liou, P. T. Newell, C. I. Meng, S.-I. Ohtani, T. Ogino, S. Kokubun, M. Brittnacher and G. K. Parks. “Plasma and magnetic flux transport associated with auroral breakups”, Geophys. Res. Lett., 25: 4059, 1998.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y., K. Liou, M. Nosé, S.-I. Ohtani, D. J. Williams, T. Mukai, K. Tsuruda, and S. Kokubun. “Near-Earth Dipolarization: Evidence for a non-MHD Process”, Geophys. Res. Lett., 26: 2905, 1999.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y. “Particle acceleration in disruption of the tail current sheet”, Phys. Chem. Earth, 24C: 259, 1999.

    ADS  Google Scholar 

  • Lui, A. T. Y., S. Chapman, K. Liou, P. T. Newell, C. I. Meng, M. Brittnacher and G. K. Parks. “Is the dynamic magnetosphere an avalanching system?”, Geophys. Res. Lett., 27: 911, 2000.

    Article  ADS  Google Scholar 

  • Lui, A. T. Y. “Multiscale phenomena in the near-Earth magnetosphere”, Jour. Atmos. Solar Terr. Phys., 64: 125, 2002.

    Article  ADS  Google Scholar 

  • Milovanov, A. V., L. M. Zelenyi, P. Veltri, G. Zimbardo and A. L. Taktakishvili. “Geometric description of the magnetic field and plasma coupling in the near-Earth stretched tail prior to a substorm”, Jour. Atmos. Solar Terr. Phys., 63: 705, 2001.

    Article  ADS  Google Scholar 

  • Nicolis, G. and I. Prigogine “Exploring Complexity. An Introduction”, R. Piper GmbH & Co., Monaco, 1987.

    Google Scholar 

  • Ohtani, S., T. Higuchi, A. T. Y. Lui, and K. Takahashi. “Magnetic fluctuations associated with tail current disruption: Fractal analysis”, Jour. Geophys. Res., 100: 19135, 1995.

    Article  ADS  Google Scholar 

  • Ohtani, S., K. Takahashi, T. Higuchi, A. T. Y. Lui, H. E. Spnce and J. F. Fennell. “AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations”, Jour. Geophys. Res., 103: 4671, 1998.

    Article  ADS  Google Scholar 

  • Price, C. P. and D. E. Newman. “Using the R/S statistics to analyse AE data”, Jour. Atmos. Solar Terr. Phys., 63: 1387, 2001.

    Article  ADS  Google Scholar 

  • Roberts, D. A., D. N. Baker, A. J. Klimas and L. F. Bargatze. “Indications of low dimensionality in magnetospheric dynamics”, Geophys. Res. Lett., 18:151, 1991.

    Article  ADS  Google Scholar 

  • Sethna, J. P., K. A. Dahmen and C. R. Myers. “Crackling noise”, Nature, 410:242, 2001.

    Article  ADS  Google Scholar 

  • Sharma, A. S., D. V. Vassiliadis, and K. Papadopoulos. EOS, Trans. AGU, 72: 402, 1991.

    Google Scholar 

  • Sharma, A. S., “Assessing the magnetosphere's nonlinear behavior: its dimensional is low, its predictability is high”, Rev. Geophys., 33: 645, 1995.

    Article  ADS  Google Scholar 

  • Sharma, A. S., M. I. Sitnov and K. Papadopoulos. “Substorms as nonequilibrium transitions of the magnetosphere”, Jour. Atmos. Sol. Terr. Phys., 63: 1399, 2001.

    Article  ADS  Google Scholar 

  • Sitnov, M. I., A. S. Sharma, K. Papadopoulos, D. Vassiliadis, J. A. Valdivia, A. J. Klimas and D. N. Baker. “Phase transition-like behavior of the magnetosphere during substorms”, Jour. Geophys. Res., 105: 12955, 2000.

    Article  ADS  Google Scholar 

  • Sitnov, M. I., A. S. Sharma, K. Papadopoulos, and D. Vassiliadis. “Modeling substorm dynamics of the magnetosphere: from self-organization and self-organized criticality to non'equilibrium phase transitions”, Phys. Rev. E, 65: 16116, 2001.

    Article  Google Scholar 

  • Takalo, J., J. Timonen, A. J. Klimas, J. Valdivia and D. V. Vassiliadis. “Nonlinear energy dissipation in a cellular automaton magnetotail field model”, Geophys. Res. Lett., 26: 1813, 1999.

    Article  ADS  Google Scholar 

  • Takalo, J., K. Mursula and J. Timonen “Role of the driver in the dynamics of a coupled-map model of the magnetotail: Does the magnetosphere act as a low-pass filter?”, Jour. Geophys. Res., 105: 27665, 2000.

    Article  ADS  Google Scholar 

  • Tam, S. W. Y., T. Chang, S. Chapman and N. W. Watkins. “Analytical determination of power-law index for the Chapman et al. sandpile (FSOC) analog for magnetospheric activity—a renormalization-group analysis”, Geophys. Res. Lett., 27: 1367, 2000.

    Article  ADS  Google Scholar 

  • Tetrault, D. “Turbulent relaxation of magnetic fields. 1. Coarse-grained dissipation and reconnection”, Jour. Geophys. Res., 97: 8631, 1992a.

    Article  ADS  Google Scholar 

  • Tetrault, D. “Turbulent relaxation of magnetic fields. 2. Self-organization and intermittency”, Jour. Geophys. Res., 97: 8541, 1992b.

    Article  ADS  Google Scholar 

  • Uritsky, V. M. and M. I. Pudovkin. “Low frequency 1/f—like fluctuations of the AE-index as a possible manifestation of self-organized criticality in the magnetosphere”, Annals of Geophysics, 16: 1580, 1998.

    Article  Google Scholar 

  • Uritsky, V. M. and A. J. Klimas, D. Vassiliadis, D. Chua and G. D. Parks. “Scalefree statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: The dynamic magnetosphere is an avalanching system”, Jour. Geophys. Res., 107: 1426, 2002.

    Article  ADS  Google Scholar 

  • Vassiliadis, D. V., A. S. Sharma, T. E. Eastman and K. Papadopoulos. “Low-dimensional chaos in magnetospheric activity from AE time series”, Geophys. Res. Lett., 17: 1841, 1990.

    Article  ADS  Google Scholar 

  • Wolfram, S. A new kind of science, Wolfram Media Inc., 2002.

    Google Scholar 

  • Wu, C. C. and T. Chang. “2D MHD simulation of the emergence and merging of coherent structures”, Geophys. Res. Lett., 27: 863, 2000.

    Article  ADS  Google Scholar 

  • Wu, C. C. and T. Chang. “Further study of the dynamics of two-dimensional MHD coherent structures—a large scale simulation”, Jour. Atmos. Sol. Terr. Phys., 63: 1447, 2001.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Consolini, G., Chang, T., Lui, A.T.Y. (2005). Complexity and Topological Disorder in the Earth's Magnetotail Dynamics. In: Burton, W., et al. Nonequilibrium Phenomena in Plasmas. Astrophysics and Space Science Library, vol 321. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3109-2_3

Download citation

Publish with us

Policies and ethics