Skip to main content

Multi-Scale Interactions and Predictability of the Indian Summer Monsoon

  • Chapter
Nonequilibrium Phenomena in Plasmas

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 321))

Abstract

Following the seminal work of Charney and Shukla (1981), the tropical climate is recognised to be more predictable than extra tropical climate as it is largely forced by ‘external’ slowly varying forcing and less sensitive to initial conditions. However, the Indian summer monsoon is an exception within the tropics where ‘internal’ low frequency (LF) oscillations seem to make significant contribution to its interannual variability (IAV) and makes it sensitive to initial conditions. Quantitative estimate of contribution of ‘internal’ dynamics to IAV of Indian monsoon is made using long experiments with an atmospheric general circulation model (AGCM) and through analysis of long daily observations. Both AGCM experiments and observations indicate that more than 50% of IAV of the monsoon is contributed by ‘internal’ dynamics making the predictable signal (external component) burried in unpredictable noise (internal component) of comparable amplitude. Better understanding of the nature of the ‘internal’ LF variability is crucial for any improvement in predicition of seasonal mean monsoon.

Nature of ‘internal’ LF variability of the monsoon and mechanism responsible for it are investigated and shown that vigorous monsoon intraseasonal oscillations (ISO's) with time scale between 10–70 days are primarily responsible for generating the ‘internal’ IAV. The monsoon ISO's do this through scale interactions with synoptic disturbances (1–7 day time scale) on one hand and the annual cycle on the other. The spatial structure of the monsoon ISO's is similar to that of the seasonal mean. It is shown that frequency of occurance of strong (weak) phases of the ISO is different in different seasons giving rise to stronger (weaker) than normal monsoon. Change in the large scale circulation during strong (weak) phases of the ISO make it favourable (inhibiting) for cyclogenesis and gives rise to space time clustering of synoptic activity. This process leads to enhanced (reduced) rainfall in seasons of higher frequency of occurence strong (weak) phases of monsoon ISO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajaya Mohan, R. S., and B. N. Goswami, 2003: Potential predictability of the Asian summer monsoon on monthly and seasonal time scales. Met. Atmos. Phys., DOI10.1007/s00703-002-0576-4.

    Google Scholar 

  • Blanford, H. F., 1884: On the connection of the Himalaya snowfall with dry winds and seasons of drought in India. Proc. Roy. Soc. London, 37, 3–22.

    Article  Google Scholar 

  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude northern hemisphere dry climates. J. Climate, 5, 1181–1201.

    Article  ADS  Google Scholar 

  • Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics, J. Lighthill and R. P. Pearce, Eds., Cambridge University Press, pp. 99–108.

    Google Scholar 

  • Chatterjee, P., and B. N. Goswami, 2004: Sturcture, Genesis and Scale selection of the tropical quasi-biweekly mode. Q. J. R. Meteorol. Soc., (in press).

    Google Scholar 

  • Gadgil, S., 2003: The Indian monsoon and its variability. Ann. Rev. Earth Planet. Sci, 31, 429–467.

    Article  ADS  Google Scholar 

  • Gadgil, S., and S. Sajani, 1998: Monsoon precipitation in the AMIP runs. Climate Dyn., 14, 659–689.

    Article  ADS  Google Scholar 

  • Gordon, C. T., and W. Stern, 1982: A description of the GFDL global spec-tral model. Mon. Wea. Rev., 110, 625–644.

    Article  ADS  Google Scholar 

  • Goswami, B. N., 1998: Interannual variations of Indian summer monsoon in a GCM: External conditions versus internal feedbacks. J. Climate, 11, 501–522.

    Article  ADS  Google Scholar 

  • Goswami, B. N., and R. S. Ajayamohan, 2001a: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 1180–1198.

    Article  ADS  Google Scholar 

  • Goswami, B. N., and R. S. Ajayamohan, 2001b: Intra-seasonal oscillations and predictability of the Indian summer monsoon. Proc. Ind. Nat. Acad. Sci., 67, 369–384.

    Google Scholar 

  • Goswami, B. N., and J. Shukla, 1984: Quasi-periodic oscillations in a symmetric general circulation model. J. Atmos. Sci., 41, 20–37.

    Article  ADS  Google Scholar 

  • Goswami, B. N., D. Sengupta, and G. Sureshkumar, 1998: Intraseasonal oscillations and interannual variability of surface winds over the Indian monsoon region. Proc. Ind. Acad. Sci. (Earth & Planetary Sciences), 107, 45–64.

    ADS  Google Scholar 

  • Goswami, B. N., R. S. Ajaya Mohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of low pressure systems during the Indian summer monsoon by intraseasonal oscillations. Geophys. Res. Lett., 30, 8, doi:10.1029/2002GL016,734.

    Google Scholar 

  • Goswami, P., and Srividya, 1996: A novel neural network design for long-range prediction of rainfall pattern. Curr. Sci., 70, 447–457.

    Google Scholar 

  • Gowarikar, V., V. Thapliyal, R. P. Sarker, G. S. Mandel, and D. R. Sikka, 1989: Parametric and power regression models: new approach to long range forecasting of monsoon rain in India. Mausam, 40, 125–130.

    Google Scholar 

  • Hahn, D., and J. Shukla, 1976: An apparent relationship between eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci., 33, 2461–2462.

    Article  ADS  Google Scholar 

  • Kalnay, E., et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  ADS  Google Scholar 

  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the northern hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50, 2625–2643.

    Article  ADS  Google Scholar 

  • Kistler, R., et al., 2001: The NCEP/NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267.

    Article  ADS  Google Scholar 

  • Kripalani, R. H., S. V. Singh, B. N. Mandal, and V. Thapliyal, 1996: Empirical study on NIMBUS-7 snow mass and Indian summer monsoon rainfall. Int. J. Climatol., 16, 23–34.

    Article  Google Scholar 

  • Krishnamurthy, V., and J. Shukla, 2001: Observed and model simulated interannual variability of the Indian monsoon. Mausam, 52, 133–150.

    Google Scholar 

  • Krishnamurti, T. N., and P. Ardunay, 1980: The 10 to 20 day westward propagating mode and breaks in the monsoons. Tellus, 32, 15–26.

    Article  ADS  Google Scholar 

  • Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of monsoon system. Part I: Observational aspects. J. Atmos. Sci., 45, 1937–1954.

    Article  ADS  Google Scholar 

  • Lau, N. C., 1985: Modelling the seasonal dependence of atmospheric response to observed elnino in 1962–76. Mon. Wea. Rev., 113, 1970–1996.

    Article  ADS  Google Scholar 

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.

    Google Scholar 

  • Lorenz, E. N., 1984: Irregularity: a fundamental property of the atmosphere. Tellus, 36A, 98–110.

    Article  MathSciNet  ADS  Google Scholar 

  • Meehl, G. A., 1994: Coupled land-ocean-atmosphere processes and the biennial mechanism in the south Asian monsoon region. Proc. Int. Conf. on Monsoon Variability and Prediction, Trieste, Italy, WMO, pp. 637–644.

    Google Scholar 

  • Meehl, G. A., and J. M. Arblaster, 2002: The tropospheric biennial oscillation and Asian-Australian monsoon rainfall. J. Climate, 15, 722–744.

    Article  ADS  Google Scholar 

  • Mooley, D. A., and J. Shukla, 1989: Main features of the westward-moving low pressure systems which form over the Indian region during the summer monsoon season and their relation to the monsoon rainfall. Mausam, 40, 137–152.

    Google Scholar 

  • Nanjundiah, R. S., J. Srinivasan, and S. Gadgil, 1992: Intraseasonal variation of the Indian summer monsoon. Part II: Theoretical aspects. J. Meteor. Soc. Japan, 70, 529–550.

    Google Scholar 

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948.

    Article  ADS  Google Scholar 

  • Sahai, A. K., A. M. Grimm, V. Satyan, and G. B. Pant, 2003: Long-lead prediction of Indian summer monsoon rainfall from global sst evolution. Climate Dyn., 20, 855–863.

    ADS  Google Scholar 

  • Saji, N. H., and B. N. Goswami, 1997: An intercomparison of seasonal cycle of tropical surface stress simulated by 17 AMIP GCMs. Climate Dyn., 13, 561–585.

    Article  ADS  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian ocean. Nature, 401, 360–363.

    Article  ADS  Google Scholar 

  • Shukla, J., 1981: Dynamical predictability of monthly means. J. Atmos. Sci., 38, 2547–2572.

    Article  ADS  Google Scholar 

  • Shukla, J., 1987: Interannual variability of monsoon. Monsoons, J. S. Fein and P. L. Stephens, Eds., Wiley and Sons, pp. 399–464.

    Google Scholar 

  • Shukla, J., 1998: Predictability in the midst of chaos: a scientific basis for climate forecasting. Science, 282, 728–731.

    Article  ADS  Google Scholar 

  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the itcz over Indian longitude during southwest monsoon. Mon. Wea. Rev., 108, 1840–1853.

    Article  ADS  Google Scholar 

  • Sperber, K. R., and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with atmospheric model intercomparison project. J. Climate, 9, 2727–2750.

    Article  ADS  Google Scholar 

  • Sperber, K. R., et al., 2001: Dynamical seasonal predictability of the Asian summer monsoon. Mon. Wea. Rev., 129, 2226–2248.

    Article  ADS  Google Scholar 

  • Walker, G. T., 1923: Correlation in seasonal variations of weather, viii, a preliminary study of world weather. Mem. Indian Meteorol. Dept, 24, 75–131.

    Google Scholar 

  • Walker, G. T., 1924: Correlation in seasonal variations of weather, iv, a further study of world weather. Mem. Indian Meteorol. Dept, 24, 275–332.

    ADS  Google Scholar 

  • Webster, P. J., 1983: Mechanism of monsoon low-frequency variability: surface hydrological effects. J. Atmos. Sci., 40, 2110–2124.

    Article  ADS  Google Scholar 

  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shuka, R. T. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability and the prospects of prediction. J. Geophys. Res., 103(C7), 14,451–14,510.

    Article  ADS  Google Scholar 

  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using guage observations, satellite estimates and numerical predictions. J. Climate, 9, 840–858.

    Article  ADS  Google Scholar 

  • Yasunari, T., 1979: Cloudiness fluctuation associated with the northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242.

    Google Scholar 

  • Yasunari, T., 1981: Structure of an Indian summer monsoon system with around 40-day period. J. Meteor. Soc. Japan, 59, 336–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Goswami, B.N., Ajaya Mohan, R.S. (2005). Multi-Scale Interactions and Predictability of the Indian Summer Monsoon. In: Burton, W., et al. Nonequilibrium Phenomena in Plasmas. Astrophysics and Space Science Library, vol 321. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3109-2_15

Download citation

Publish with us

Policies and ethics