Skip to main content

DC Resistivity and Induced Polarization Methods

  • Chapter

Part of the book series: Water Science and Technology Library ((WSTL,volume 50))

Abstract

Direct current (DC) resistivity (here referred to as resistivity) and induced polarization (IP) methods allow, respectively, the determination of the spatial distribution of the low-frequency resistive and capacitive characteristics of soil. Since both properties are affected by lithology, pore fluid chemistry, and water content (see Chapter 4 of this volume), these methods have significant potential for hydrogeophysical applications. The methods can be applied at a wide range of laboratory and field scales, and surveys may be made in arbitrary geometrical configurations (e.g., on the soil surface and down boreholes). In fact, resistivity methods are one of the most widely used sets of geophysical techniques in hydrogeophysics. These surveys are relatively easy to carry out, instrumentation is inexpensive, data processing tools are widely available, and the relationships between resistivity and hydrological properties, such as porosity and moisture content, are reasonably well established. In contrast, applications of induced polarization methods in hydrogeophysics have been limited. As noted by Slater and Lesmes (2002), this is partly because of the more complex procedure for data acquisition, but also because the physicochemical interpretation of induced polarization parameters is not fully understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alumbaugh, D.L., and G.A. Newman, Image appraisal for 2-D and 3-D electromagnetic inversion, Geophysics, 65, 1455–1467, 2000.

    Article  Google Scholar 

  • Anderson, W.L., Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering, Geophysics, 44, 1287–1305, 1979.

    Article  Google Scholar 

  • Barker, R.D., Signal contributions and their use in resistivity studies, Geophys. J. Royal Astr. Soc., 59, 123–129, 1979.

    Google Scholar 

  • Bernard, J., and P. Valla, Groundwater exploration in fissured media with electrical and VLF methods, Geoexploration, 27, 81–91, 1991.

    Article  Google Scholar 

  • Bevc, D., and H.F. Morrison, Borehole-to-surface electrical resistivity monitoring of a salt water injection experiment, Geophysics, 56, 769–777, 1991.

    Article  Google Scholar 

  • Bing, Z., and S.A. Greenhalgh, Cross-hole resistivity tomography using different electrode configurations, Geophys. Prosp., 48, 887–912, 2000.

    Article  Google Scholar 

  • Bing, Z., and S.A. Greenhalgh, Finite element three-dimensional direct current resistivity modelling: Accuracy and efficiency considerations, Geophys. J. Internat., 145, 679–688, 2001.

    Article  Google Scholar 

  • Binley, A., S. Henry-Poulter, and B. Shaw, Examination of solute transport in an undisturbed soil column using electrical resistance tomography, Water Resour. Res., 32, 763–769, 1996.

    Article  Google Scholar 

  • Binley, A., P. Winship, L.J. West, M. Pokar, and R. Middleton, Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles, J. Hydrol., 267, 160–172, 2002a.

    Article  Google Scholar 

  • Binley, A., G. Cassiani, R. Middleton, and P. Winship, Vadose zone model parameterisation using cross-borehole radar and resistivity imaging, J. Hydrol., 267, 147–159, 2002b.

    Article  Google Scholar 

  • Börner, F.D., J.R. Schopper, and A. Weller, Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements, Geophy. Prosp., 44, 583–601, 1996.

    Article  Google Scholar 

  • Christensen, N.B., Optimized fast Hankel transform filters, Geophys. Prosp., 27, 876–901, 1990.

    Google Scholar 

  • Christensen, N.B., and K. Sørensen, Pulled array continuous electrical sounding with an additional inductive source: An experimental design study, Geophys. Prosp., 49, 241–254, 2001.

    Article  Google Scholar 

  • Coggon, J.H., Electromagnetic and electrical modeling by the finite element method, Geophysics, 36, 132–155, 1971.

    Article  Google Scholar 

  • Dahlin, T., On the automation of 2-D resistivity surveying for engineering and environmental applications, PhD Thesis, Lund Univ., Sweden, 1993.

    Google Scholar 

  • Dahlin, T., and M.H. Loke, Quasi-3-D resistivity imaging-mapping of three-dimensional structures using 2-D resistivity techniques, Proc. 3 rd Mtg. Environmental and Engineering Geophysics, Environ. Eng. Geophys. Soc., Eur. Section, 143–146, 1997.

    Google Scholar 

  • Dahlin, T., V. Leroux, and J. Nissen, Measuring techniques in induced polarisation imaging, J. Appl. Geophys., 50, 279–298, 2002.

    Article  Google Scholar 

  • Dam, D., and S. Christensen, Including geophysical data in ground water model calibration, Ground Water, 41, 178–189, 2003.

    Article  Google Scholar 

  • Daily, W., and E. Owen, Cross borehole resistivity tomography, Geophysics, 56, 1228–1235, 1991.

    Article  Google Scholar 

  • Daily, W.D., W. Lin, and T. Buscheck, Hydrological properties of Topopah Spring tuff: Laboratory measurements, J. Geophys. Res., 92, 7854–7864, 1987.

    Google Scholar 

  • Daily, W.D., A.L. Ramirez, D.J. LaBrecque, and J. Nitao, Electrical resistivity tomography of vadose water movement, Water Resour. Res., 28, 1429–1442, 1992.

    Article  Google Scholar 

  • Daily, W., A. Ramirez, and A. Binley, Remote monitoring of leaks in storage tanks using electrical resistance tomography: Application at the Hanford Site, J. Environ. Eng. Geophys., 9, 11–24, 2004.

    Google Scholar 

  • deGroot-Hedlin, C., and S.C. Constable, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55, 1613–1624, 1990.

    Article  Google Scholar 

  • Dey, A., and H.F. Morrison, Resistivity modeling for arbitrarily shaped three-dimensional structures, Geophysics, 44, 753–780, 1979a.

    Article  Google Scholar 

  • Dey, A., and H.F. Morrison, Resistivity modelling for arbitrarily shaped two-dimensional structures, Geophys. Prosp., 27, 106–136, 1979b.

    Article  Google Scholar 

  • Ellis, R.G., and D.W. Oldenburg, Applied geophysical inversion, Geophys. J. Internat., 116, 5–11, 1994.

    Article  Google Scholar 

  • French, H.K., C. Hardbattle, A. Binley, P. Winship, and L. Jakobsen, Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography, J. Hydrol., 267, 273–284, 2002.

    Article  Google Scholar 

  • Frohlich, R.K., and C.D. Parke, The electrical resistivity of the vadose zone—Field survey, Ground Water, 27, 524–530, 1989.

    Article  Google Scholar 

  • Hohmann, G.W., Numerical modeling for electromagnetic methods of geophysics, in Electromagnetic Methods in Applied Geophysics, Vol. 1, Theory, M.N. Nabighian, ed., Soc. Expl. Geophys., pp. 313–363, 1988.

    Google Scholar 

  • Kalinski, R.J., W.E. Kelly, I. Bogardi, and I. Pesti, Electrical resistivity measurements to estimate travel times through unsaturated ground water protective layers, J. Appl. Geophys., 30, 161–173, 1993.

    Article  Google Scholar 

  • Kean, W.F., M.J. Waller, and H.R. Layson, Monitoring moisture migration in the vadose zone with resistivity, Ground Water, 27, 562–571, 1987.

    Article  Google Scholar 

  • Kemna, A., Tomographic inversion of complex resistivity—Theory and application, PhD Thesis, Bochum Ruhr-Univ., Germany (published by: Der Andere Verlag, Osnabrück, Germany), 2000.

    Google Scholar 

  • Kemna, A., and A. Binley, Complex electrical resistivity tomography for contaminant plume delineation, Proc. 2 nd Mtg. Environmental and Engineering Geophysics, Environ. Eng. Geophys. Soc., Eur. Section, 196–199, 1996.

    Google Scholar 

  • Kemna, A., A. Binley, A.L. Ramirez, and W.D. Daily, Complex resistivity tomography for environmental applications, Chem. Eng. J., 77, 11–18, 2000.

    Article  Google Scholar 

  • Kemna, A., J. Vanderborght, B. Kulessa, and H. Vereecken, Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125–146, 2002.

    Article  Google Scholar 

  • Kemna, A., A. Binley, and L. Slater, Cross-borehole IP imaging for engineering and environmental applications, Geophysics, 69, 97–107, 2004a.

    Article  Google Scholar 

  • Kemna, A., J. Vanderborght, H. Hardelauf, and H. Vereecken, Quantitative imaging of 3-D solute transport using 2-D time-lapse ERT: A synthetic feasibility study, Proc. Symp. Application of Geophysics to Engineering and Environmental Problems, Environ. Eng. Geophys. Soc., 342–353, 2004b.

    Google Scholar 

  • Koefoed, O., 1979, Geosounding Principles, Vol. 1: Resistivity Sounding Measurements, Elsevier Science Publ. Co., Inc., 1979.

    Google Scholar 

  • Kosinski, W.K., and W.E. Kelly, Geoelectric soundings for predicting aquifer properties, Ground Water, 19, 163–171, 1981.

    Article  Google Scholar 

  • LaBrecque, D.J., IP tomography, 61 st Ann. Internat. Mtg., Expanded Abstracts, Soc. Expl. Geophys., 413–416, 1991.

    Google Scholar 

  • LaBrecque, D.J., M. Miletto, W. Daily, A. Ramirez, and E. Owen, The effects of noise on Occam’s inversion of resistivity tomography data, Geophysics, 61, 538–548, 1996.

    Article  Google Scholar 

  • LaBrecque, D.J., and X. Yang, Difference inversion of ERT data: A fast inversion method for 3-D in-situ monitoring, Proc. Symp. Application of Geophysics to Engineering and Environmental Problems, Environ. Eng. Geophys. Soc., 723–732, 2002.

    Google Scholar 

  • Li, Y., and K. Spitzer, Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions, Geophys. J. Internat., 151, 924–934, 2002.

    Article  Google Scholar 

  • Liu, S., and T.-C.J. Yeh, An integrative approach for monitoring water movement in the vadose zone, Vadose Zone J., in press, 2004.

    Google Scholar 

  • Loke, M.H., and R.D. Barker, Least-squares deconvolution of apparent resistivity pseudosections, Geophysics, 60, 1682–1690, 1995.

    Article  Google Scholar 

  • Loke, M.H., and R.D. Barker, Practical techniques for 3-D resistivity surveys and data inversion, Geophys. Prosp., 44, 499–523, 1996.

    Article  Google Scholar 

  • Loke, M.H, I. Acworth, and T. Dahlin, A comparison of smooth and blocky inversion methods in 2-D electrical imaging surveys, Proc. 15 th Geophysical Conference and Exhibition, Austr. Soc. Expl. Geophys., 2001.

    Google Scholar 

  • Lowry, T., M.B. Allen, and P.N. Shive, Singularity removal: A refinement of resistivity modeling techniques, Geophysics, 54, 766–774, 1989.

    Article  Google Scholar 

  • Lytle, R.J., and K.A. Dines, An impedance camera: A system for determining the spatial variation of electrical conductivity, Lawrence Livermore National Laboratory Report UCRL-52413, Livermore, California, USA, 1978.

    Google Scholar 

  • Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, Inc., 1989.

    Google Scholar 

  • Mussett, A.E., and M.A. Khan, Looking into the Earth. An Introduction to Geological Geophysics, Cambridge University Press, 2000.

    Google Scholar 

  • Nimmer, R.E., and J.L Osiensky, Direct current and self-potential monitoring of an evolving plume in partially saturtated fractured rock, J. Hydrol., 267, 258–272, 2001.

    Article  Google Scholar 

  • Oldenburg, D.W., and Y. Li, Inversion of induced polarization data, Geophysics, 59, 1327–1341, 1994.

    Article  Google Scholar 

  • Oldenburg, D.W., and Y. Li, Estimating depth of investigation in DC resistivity and IP surveys, Geophysics, 64, 403–416, 1999.

    Article  Google Scholar 

  • Osiensky, J.L., Ground water modeling of mise-a-la-masse delineation of contaminated ground water plumes, J. Hydrol., 197, 146–165, 1997.

    Article  Google Scholar 

  • Panissod, C., M. Lajarthe, and A. Tabbagh, Potential focusing: A new multielectrode array concept, simulation study and field tests in archaeological prospecting, J. Appl. Geophys., 38, 1–23, 1997.

    Article  Google Scholar 

  • Park, S.K., and G.P. Van, Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes, Geophysics, 56, 951–960, 1991.

    Article  Google Scholar 

  • Pridmore, D.F., G.W. Hohmann, S.H. Ward, and W.R. Sill, An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions: Geophysics, 46, 1009–1024, 1981.

    Article  Google Scholar 

  • Ramirez, A., and W. Daily, Electrical imaging at the large block test—Yucca Mountain, Nevada, J. Appl. Geophys., 46, 85–100, 2001.

    Article  Google Scholar 

  • Ramirez, A., W. Daily, D. LaBrecque, E. Owen, and D. Chesnut, Monitoring an underground steam injection process using electrical resistance tomography, Water Resour. Res., 29, 73–87, 1993.

    Article  Google Scholar 

  • Ramirez, A., W.D. Daily, and R.L. Newmark, Electrical resistance tomography for steam injection monitoring and process control, J. Environ. Eng. Geophys., 0, 39–51, 1995.

    Google Scholar 

  • Ramirez, A., W. Daily, A. Binley, D. LaBrecque, and D. Roelant, Detection of leaks in underground storage tanks using electrical resistance methods, J. Environ. Eng. Geophys., 1, 189–203, 1996.

    Article  Google Scholar 

  • Reynolds, J.M., An Introduction to Applied and Environmental Geophysics, Wiley, 1998.

    Google Scholar 

  • Seigel, H.O., Mathematical formulation and type curves for induced polarization, Geophysics, 24, 547–565, 1959.

    Article  Google Scholar 

  • Schima, S., D.J. LaBrecque, P.D. Lundegard, Using resistivity tomography to monitor air sparging, Ground Water Monitoring and Remediation, 16, 131–138, 1996.

    Article  Google Scholar 

  • Schenkel, C.J., Resistivity imaging using a steel cased well, Lawrence Livermore National Laboratory Report UCRL-JC-121653, Livermore, California, USA, 1995.

    Google Scholar 

  • Seppänen, A., M. Vauhkonen, P.J. Vauhkonen, E. Somersalo, and J.P. Kaipio, State estimation with fluid dynamical evolution models in process tomography: An application to impedance tomography, Inverse Problems, 17, 467–483, 2001.

    Article  Google Scholar 

  • Simms, J.E. and F.D. Morgan, Comparison of four least-squares inversion schemes for studying equivalence in one-dimensional resistivity interpretation, Geophysics, 57, 1282–1293, 1992.

    Article  Google Scholar 

  • Slater, L., and D. Lesmes, IP interpretation in environmental investigations, Geophysics, 67, 77–88, 2002.

    Article  Google Scholar 

  • Slater, L., A. Binley, W. Daily, and R. Johnson, Cross-hole electrical imaging of a controlled saline tracer injection, J. Appl. Geophys., 44, 85–102, 2000.

    Article  Google Scholar 

  • Sørensen, K., Pulled array continuous electrical profiling, First Break, 14, 85–90, 1996.

    Google Scholar 

  • Spitzer, K., A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods, Geophys. J. Internat., 123, 903–914, 1995.

    Article  Google Scholar 

  • Taylor, R.W., and A.H. Fleming, Characterizing jointed systems by azimuthal resistivity surveys, Ground Water, 26, 1988.

    Google Scholar 

  • Telford, W.M., L.P. Geldart, and R.E. Sheriff, Applied Geophysics, 2nd ed., Cambridge Univ. Press, 1990.

    Google Scholar 

  • Tikhonov, A.N., and V.Y. Arsenin, Solutions of Ill-Posed Problems, W.H. Winston and Sons, 1977.

    Google Scholar 

  • Weller, A., M. Seichter, and A. Kampke, Induced-polarization modelling using complex electrical conductivities, Geophys. J. Internat., 127, 387–398, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Binley, A., Kemna, A. (2005). DC Resistivity and Induced Polarization Methods. In: Rubin, Y., Hubbard, S.S. (eds) Hydrogeophysics. Water Science and Technology Library, vol 50. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3102-5_5

Download citation

Publish with us

Policies and ethics