Skip to main content

Hydrogeological Methods for Estimation of Spatial Variations in Hydraulic Conductivity

  • Chapter

Part of the book series: Water Science and Technology Library ((WSTL,volume 50))

Abstract

Virtually every hydrogeologic investigation requires an estimate of hydraulic conductivity (K), the parameter used to characterize the ease with which water flows in the subsurface. For water-supply investigations, a single estimate of K averaged over a relatively large volume of an aquifer will usually suffice. However, for water-quality investigations, such an estimate is often of limited value. A large body of work has demonstrated that spatial variations in K play an important role in controlling solute movement in saturated flow systems (e.g., Sudicky and Huyakorn, 1991; Zheng and Gorelick, 2003). Numerous studies have shown that information about such variations is required to obtain reliable predictions of contaminant transport and to design effective remediation systems. Varieties of methods have been used in efforts to acquire this information. The primary purpose of this chapter is to describe these methods and assess the quality of the information that they can provide. Later chapters will discuss how geophysics can augment the information obtained with these approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, K.B., and F.J. Molz, In-well hydraulics of the electromagnetic borehole flowmeter: Further studies, Ground Water Monit. and Remed., 20(1), 52–55, 2000.

    Article  Google Scholar 

  • Baehr, A.L., and M.F. Hult, Evaluation of unsaturated zone air permeability through pneumatic tests, Water Resour. Res., 27(10), 2605–2617, 1991.

    Article  Google Scholar 

  • Baligh, M.M., and J.N. Levadoux, Pore pressure dissipation after cone penetration, Report R80-11, Dept. of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1980.

    Google Scholar 

  • Barker, J.A., A generalized radial flow model for hydraulic tests in fractured rock, Water Resour. Res., 24(10), 1796–1804, 1988.

    Google Scholar 

  • Batu, V., Aquifer Hydraulics, Wiley, 1998

    Google Scholar 

  • Bear, J., Dynamics of Fluids in Porous Media, Dover, 1972.

    Google Scholar 

  • Beckie, R., and C.F. Harvey, What does a slug test measure: An investigation of instrument response and the effects of heterogeneity, Water Resour. Res., 38(12), 1290, doi:10.1029/2001WR001072, 2002.

    Article  Google Scholar 

  • Bedinger, M.S., Relation between median grain size and permeability in the Arkansas River Valley, Arkansas, USGS Prof. Paper 292, Art. 147, p. C-31, 1961.

    Google Scholar 

  • Bliss, J.C., and K.R. Rushton, The reliability of packer tests for estimating the hydraulic conductivity of aquifers, Q. J. Eng. Geol., 17, 81–91, 1984.

    Google Scholar 

  • Bohling, G.C., Evaluation of an Induced Gradient Tracer Test, Ph.D. dissertation, Univ. of Kansas, Lawrence, Kansas, 1999

    Google Scholar 

  • Bohling, G.C., X. Zhan, J.J. Butler, Jr., and L. Zheng, Steady-shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities, Water Resour. Res., 38(12), 1324, doi:10.1029/2001 WR001176, 2002.

    Article  Google Scholar 

  • Bohling, G.C., Zhan, X., Knoll, M.D., and J.J. Butler, Jr., Hydraulic tomography and the impact of a priori information: An alluvial aquifer field example (abstract), Eos, 84(46), p. F632 (also Ks. Geol. Survey Open-File Rept. 2003-71), 2003.

    Google Scholar 

  • Boman, G.K., F.J. Molz, and K.D. Boone, Borehole flowmeter application in fluvial sediments: Methodology, results, and assessment, Ground Water, 35(3), 443–450, 1997.

    Article  Google Scholar 

  • Bouwer, H., and R.C. Rice, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resour. Res., 12(3), 423–428, 1976.

    Google Scholar 

  • Braester, C., and R. Thunvik, Determination of formation permeability by double-packer tests, Jour. Hydrology, 72, 375–389, 1984.

    Article  Google Scholar 

  • Bryar, T.R. and R.J. Knight, Sensitivity of nuclear magnetic resonance relaxation measurements to changing soil redox conditions, Geophys. Res. Let., 29(24), 2197–2200, 2002.

    Article  Google Scholar 

  • Butler, J.J., Jr., The role of pumping tests in site characterization: Some theoretical considerations, Ground Water, 28(3), 394–402, 1990.

    Article  Google Scholar 

  • Butler, J.J., Jr., The Design, Performance, and Analysis of Slug Tests, Lewis Pub., 1998.

    Google Scholar 

  • Butler, J.J., Jr., A simple correction for slug tests in small-diameter wells, Ground Water, 40(3), 303–307, 2002.

    Article  Google Scholar 

  • Butler, J.J., Jr., and J.M. Healey, Relationship between pumping-test and slug-test parameters: Scale effect or artifact? Ground Water, 36(2), 305–313, 1998.

    Article  Google Scholar 

  • Butler, J.J., Jr., and W.Z. Liu, Pumping tests in nonuniform aquifers: The radially asymmetric case, Water Resour. Res., 29(2), 259–269, 1993.

    Article  Google Scholar 

  • Butler, J.J., Jr., and C.D. McElwee, Well-testing methodologies for characterizing heterogeneities in alluvial-aquifer systems: Final technical report, Project Report to USGS Water Resources Research Program, U.S. Dept. of Interior, (also Ks. Geol. Survey Open-File Rept. 95–75), 1996.

    Google Scholar 

  • Butler, J.J., Jr., E.J. Garnett, and J.M. Healey, Analysis of slug tests in formations of high hydraulic conductivity, Ground Water, 41(5), 620–630, 2003.

    Article  Google Scholar 

  • Butler, J. J., Jr., C.D. McElwee, and G. C. Bohling, Pumping tests in networks of multilevel sampling wells: Motivation and methodology, Water Resour. Res., 35(11), 3553–3560, 1999a.

    Article  Google Scholar 

  • Butler, J.J., Jr., C.D. McElwee, and W. Liu, Improving the quality of parameter estimates obtained from slug tests, Ground Water, 34(2), 480–490, 1996.

    Article  Google Scholar 

  • Butler, J.J., Jr., G.C. Bohling, Z. Hyder, and C.D. McElwee, The use of slug tests to describe vertical variations in hydraulic conductivity, Jour. Hydrology, 156, 137–162, 1994.

    Article  Google Scholar 

  • Butler, J.J., Jr., P. Dietrich, T.M. Christy, and V. Wittig, The direct-push permeameter for characterization of spatial variations in hydraulic conductivity: Description and field assessment (abstract), In: Proc. of the 2004 North American Environmental Field Conf. and Exposition, 2004.

    Google Scholar 

  • Butler, J.J., Jr., J.M. Healey, V.A. Zlotnik, and B.R. Zurbuchen, The dipole flow test for site characterization: Some practical considerations (abstract), Eos, 79(17), p. S153 [Also: Ks. Geol. Survey Open-File Rept. 98–20, 1998a], www.kgs.ukans.edu/Hydro/publication /OFR98_20/index.html)

    Google Scholar 

  • Butler, J.J., Jr., V.A. Zlotnik, B.R. Zurbuchen, and J.M. Healey, Single-borehole hydraulic tests for characterization of vertical variations in hydraulic conductivity: A field and theoretical assessment (abstract), In: Proc. of Technical Program for the NGWA 50th National Convention, pp. 94–95, 1998b.

    Google Scholar 

  • Butler, J.J., Jr., J.M. Healey, G.W. McCall, E.J. Garnett, and S.P. Loheide, II, Hydraulic tests with direct-push equipment, Ground Water, 40(1), 25–36, 2002.

    Article  Google Scholar 

  • Butler, J.J., Jr., J.M. Healey, L. Zheng, W. McCall, and M.K. Schulmeister, Hydrostratigraphic characterization of unconsolidated alluvium with direct-push sensor technology, Kansas Geological Survey Open-File Rept. 99-40 (www.kgs.ukans.edu/Hydro/Publications/OFR99_40/index.html), 1999b.

    Google Scholar 

  • Campbell, C.M., and D.D. Fritton, Factors affecting field-saturated hydraulic conductivity measured using the borehole permeameter technique, Soil Sci. Soc. Am. J., 58, 1354–1357, 1994.

    Article  Google Scholar 

  • Cho, J.S., J.T. Wilson, and F.P. Beck, Jr., Measuring vertical profiles of hydraulic conductivity with in-situ direct push methods, Jour. Environ. Eng., 126(8), 775–777, 2000.

    Article  Google Scholar 

  • Christy, C.D., T.M. Christy, and V. Wittig, A percussion probing tool for the direct sensing of soil conductivity, In: Proc. of the 8th National Outdoor Action Conf., NGWA, 381–394, 1994.

    Google Scholar 

  • Coates, G.R., L. Xiao, and M.G. Prammer, NMR Logging-Principles and Applications, Gulf Publishing, 2001.

    Google Scholar 

  • Cooper, H.H., Jr., and C.E. Jacob, A generalized graphical method for evaluating formation constants and summarizing well field history, Eos Trans. AGU, 27, 526–534, 1946.

    Google Scholar 

  • Crisman, S.A., F.J. Molz, D.L. Dunn, and F.C. Sappington, Application procedures for the electromagnetic borehole flowmeter in shallow unconfined aquifers, Ground Water Monit. and Remed., 21(4), 96–100, 2001.

    Article  Google Scholar 

  • Danielson, R.E., and P.L. Sutherland, Porosity, Methods of soil analysis, Part 1., In: Physical and Mineralogical Methods, ed. by A. Klute, Agronomy Monograph 9, American Soc. of Agronomy, 443–461, 1986.

    Google Scholar 

  • Datta-Gupta, A., S. Yoon, D.W. Vasco, and G.A. Pope, Inverse modeling of partitioning interwell tracer tests: A streamline approach, Water Resour. Res., 38(6), 1079, doi:10.1029/2001WR000597, 2002.

    Article  Google Scholar 

  • Davis, G.A., S.F. Cain, J.J. Butler, Jr., X. Zhan, J.M. Healey, and G.C. Bohling, A field assessment of hydraulic tomography: A new approach for characterizing spatial variations in hydraulic conductivity (abstract), In: GSA 2002 Annual Meeting Abstracts with Program, 34(6), p. 23, 2002.

    Google Scholar 

  • Dietrich, P., J.J. Butler, Jr., U. Yaramanci, V. Wittig, T. Tiggelmann, and S. Schoofs, 2003, Field comparison of direct-push approaches for determination of K-profiles (abstract), Eos, 84(46), p. F661, 2003.

    Google Scholar 

  • Dinwiddie, C.L., N.A. Foley, and F.J. Molz, In-well hydraulics of the electromagnetic borehole flowmeter, Ground Water, 37(2), 305–315, 1999.

    Article  Google Scholar 

  • Dinwiddie, C.L., F.J. Molz, III, and J.W. Castle, A new small drill hole minipermeameter probe for in situ permeability measurement: Fluid mechanics and geometrical factors, Water Resour. Res., 39(7), 1178, doi:10.1029/2001WR001179, 2003.

    Article  Google Scholar 

  • Doe, T., J. Osnes, M. Kenrick, J. Geier, and S. Warner, Design of well-testing programs for waste disposal in crystalline rock, In: Proc. Sixth Congress Intl. Soc. Rock Mech., ed. by G. Herget and S. Vongpaisal, 6(3), 1377–1398, 1989.

    Google Scholar 

  • Doughty, C., and K. Karasaki, Flow and transport in hierarchically fractured rock, Jour. Hydrology, 263, 1–22, 2002.

    Article  Google Scholar 

  • Farrar, J.A., 1996, Research and standardization needs for direct push technology applied to environmental site characterization, In: Sampling Environmental Media, ed. by J.H. Morgan, ASTM Special Technical Publication 1282, American Society for Testing and Materials, Philadelphia, 93–107, 1996.

    Google Scholar 

  • Flühler, H., M.S. Ardakani, and L.H. Stolzy, Error propagation in determining hydraulic conductivities from successive water content and pressure head profiles, Soil Sci. Soc. Am. J., 40, 830–836, 1976.

    Article  Google Scholar 

  • Freeze, R.A., and J.A. Cherry, Groundwater, Prentice Hall, 1979.

    Google Scholar 

  • Freyberg, D.L., A natural gradient experiment on solute transport in a sand aquifer, 2. Spatial moments and the advection and dispersion of nonreactive tracers, Water Resour. Res., 22(13), 2031–2046, 1986.

    Google Scholar 

  • Gee, G.W., and J.W. Bauder, Particle-size analysis: Methods of soil analysis, Part 1., In: Physical and Mineralogical Methods, ed. by A. Klute, Agronomy Monograph 9, American Soc. of Agronomy, 383–411, 1986.

    Google Scholar 

  • Gelhar, L.W., C. Welty, and K.R. Rehfeldt, A critical review of data on field-scale dispersion in aquifers, Water Resour. Res., 28(7), 1955–1974, 1992.

    Article  Google Scholar 

  • Gottlieb, J., and P. Dietrich, Identification of the permeability distribution in soil by hydraulic tomography, Inverse Problems, 11, 353–360, 1995.

    Article  Google Scholar 

  • Henebry, B.J., and G.A. Robbins, Reducing the influence of skin effects on hydraulic conductivity determinations in multilevel samplers installed with direct push methods, Ground Water, 38(6), 882–886, 2000.

    Article  Google Scholar 

  • Hess, K.M., S.H. Wolf, and M.A. Celia, Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 3. Hydraulic conductivity variability and calculated macrodispersivities, Water Resour. Res., 28(8), 2011–2027, 1992.

    Article  Google Scholar 

  • Hinsby, K., P.L. Bjerg, L.J. Andersen, B. Skov, and E.V. Clausen, A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer, Jour. Hydrology, 136, 87–106, 1992.

    Article  Google Scholar 

  • Holt, R.M., J.L. Wilson, and R.J. Glass, Spatial bias in field-estimated unsaturated hydraulic properties, Water Resour. Res., 38(12), 1311, doi:10.1029/ 2002WR001336, 2002.

    Article  Google Scholar 

  • Hurst, A., and D. Goggin, Probe permeametry: An overview and bibliography, AAPG Bull., 79(3), 463–473, 1995.

    Google Scholar 

  • Hvilshøj, S., K.H. Jensen, K.H., and B. Madsen, Single-well dipole flow tests: Parameter estimation and field testing, Ground Water, 38(1), 53–62, 2000.

    Article  Google Scholar 

  • Hvorslev, M.J., Time lag and soil permeability in ground-water observations, U.S. Army Corps of Engrs. Waterways Exper. Sta. Bull no. 36, 1951.

    Google Scholar 

  • Illman, W.A., and S.P. Neuman, Type-curve interpretation of multirate single-hole pneumatic injection tests in unsaturated fractured rock, Ground Water, 38(6), 899–911, 2000.

    Article  Google Scholar 

  • Illman, W.A., and S.P. Neuman, Type curve interpretation of a cross-hole pneumatic injection test in unsaturated fractured tuff, Water Resour. Res., 37(3), 583–603, 2001.

    Article  Google Scholar 

  • Javandel, I., and P.A. Witherspoon, A method of analyzing transient fluid flow in multilayered aquifers, Water Resour. Res., 5(4), 856–869, 1969.

    Google Scholar 

  • Kabala, Z.J., The dipole flow test: A new single-borehole test for aquifer characterization, Water Resour. Res., 29(1), 99–107, 1993.

    Article  Google Scholar 

  • Karasaki, K., B. Freifeld, A. Cohen, K. Grossenbacher, P. Cook, and D. Vasco, A multidisciplinary fractured rock characterization study at Raymond field site, Raymond, CA, Jour. Hydrology, 236, 17–34, 2000.

    Article  Google Scholar 

  • Keys, W.S., Borehole geophysics applied to ground-water investigations, USGS Techniques of Water-Resources Investigations, Book 2, Chapter E2, 1990.

    Google Scholar 

  • Keys, W.S., A Practical Guide to Borehole Geophysics in Environmental Investigations, CRC Press, 1997.

    Google Scholar 

  • Klute, A., and C. Dirksen, Hydraulic conductivity and diffusivity: Laboratory methods, Methods of soil analysis, Part 1., In: Physical and Mineralogical Methods, ed. by A. Klute, Agronomy Monograph 9, American Soc. of Agronomy, 687–734, 1986.

    Google Scholar 

  • Kruseman, G.P., and N.A. de Ridder, Analysis and Evaluation of Pumping Test Data—ILRI Pub. 47, The Netherlands, Int. Inst. for Land Reclamation and Improvement, 1990.

    Google Scholar 

  • Leap, D.I., and P.G. Kaplan, A single-well tracing method for estimating regional advective velocity in a confined aquifer: Theory and preliminary laboratory verification, Water Resour. Res., 24(7), 993–998, 1988.

    Google Scholar 

  • Liu, S., T.-C. J. Yeh, and R. Gardiner, Effectiveness of hydraulic tomography: Sandbox experiments, Water Resour. Res., 38(4), doi:10.1029/2001WR000338, 2002.

    Google Scholar 

  • Lowry, W., N. Mason, V. Chipman, K. Kisiel, and J. Stockton, In-situ permeability measurements with direct push techniques: Phase II Topical Report, SEASF-TR-98-207 Rept. to DOE Federal Energy Tech. Center, 1999.

    Google Scholar 

  • Lunne, T., P.K. Robertson, and J.J.M. Powell, Cone Penetration Testing in Geotechnical Practice, London, Blackie Academic and Professional, 1997.

    Google Scholar 

  • McCall, W., J.J. Butler, Jr., J.M. Healey, A.A. Lanier, S.M. Sellwood, and E.J. Garnett, A dual-tube direct-push method for vertical profiling of hydraulic conductivity in unconsolidated formations, Environ. & Eng. Geoscience, 8(2), 75–84, 2002.

    Google Scholar 

  • McElwee, C.D., Application of a nonlinear slug test model, Ground Water, 39(5), 737–744, 2001.

    Article  Google Scholar 

  • McElwee, C.D., and M.A. Zenner, A nonlinear model for analysis of slug-test data, Water Resour. Res., 34(1), 55–66, 1998.

    Article  Google Scholar 

  • McElwee, C.D., J.J. Butler, Jr., and J.M. Healey, A new sampling system for obtaining relatively undisturbed cores of unconsolidated coarse sand and gravel, Ground Water Monit. Rev., 11(3), 182–191, 1991.

    Article  Google Scholar 

  • Meier, P.M., J. Carrera, and X. Sánchez-Vila, An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations, Water Resour. Res., 34(5), 1011–1025, 1998.

    Article  Google Scholar 

  • Melville, J.G., F.J. Molz, O. Guven, and M.A. Widdowson, Multilevel slug tests with comparisons to tracer data, Ground Water, 29(6), 897–907, 1991.

    Article  Google Scholar 

  • Molz, F.J., and S.C. Young, Development and application of borehole flowmeters for environmental assessment, The Log Analyst, 34(1), 13–23, 1993.

    Google Scholar 

  • Molz, F.J., R.H. Morin, A.E. Hess, J.G. Melville, and O. Guven, The impeller meter for measuring aquifer permeability variations: Evaluation and comparison with other tests, Water Resour. Res., 25(7), 1677–1683, 1989.

    Google Scholar 

  • Neuman, S.P., Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts, In: Proc. U.S. Symp. Rock Mech., 28 th, pp. 533–561, 1987.

    Google Scholar 

  • Neuzil, C.E., Groundwater flow in low permeability environments, Water Resour. Res., 22(8), 1163–1195, 1986.

    Article  Google Scholar 

  • Novakowski, K.S., Analysis of pulse interference tests, Water Resour. Res., 25(11), 2377–2387, 1989.

    Google Scholar 

  • Or, D., U. Shani, and A.W. Warrick, Subsurface tension permeametry, Water Resour. Res., 36(8), 2043–2053, 2000.

    Article  Google Scholar 

  • Peursem, D.V., V.A. Zlotnik, and G. Ledder, Groundwater flow near vertical recirculatory wells: Effect of skin on flow geometry and travel times with implications for aquifer remediation, Jour. Hydrology, 222, 109–122, 1999.

    Article  Google Scholar 

  • Pitkin, S.E., and M.D. Rossi, A real time indicator of hydraulic conductivity distribution used to select groundwater sampling depths (abstract), Eos, 81(19), S239, 2000.

    Google Scholar 

  • Press, W. H., S.A. Teukolsky, W.T. Vetterling, and B. P. Flannery, 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge University Press, 1992.

    Google Scholar 

  • Reynolds, W.D., D.E. Elrick, E.G. Youngs, A. Amoozegar, H.W.G. Booltink, and J. Bouma, Saturated and field-saturated water flow parameters, In: Methods of Soil Analysis, Part 4, Physical Methods, ed. by J.H. Dane and G.C. Topp, Soil Science Society of America Book Series No. 5, Soil Sci. Soc. of Am., Inc., 797–878, 2002.

    Google Scholar 

  • Rovey, C.W., II, Discussion of “Relationship between pumping-test and slug-test parameters: Scale effect or artifact?” Ground Water, 36(6), 866–867, 1998.

    Article  Google Scholar 

  • Sánchez-Vila, X., P.M. Meier, and J. Carrera, Pumping tests in heterogeneous aquifers: An analytical study of what can be obtained from their interpretation using Jacob’s method, Water Resour. Res., 35(4), 943–952., 1999.

    Article  Google Scholar 

  • Schad, H., and G. Teutsch, Effects of the investigation scale on pumping test results in heterogeneous porous aquifers, Jour. Hydrology, 159, 61–77, 1994.

    Article  Google Scholar 

  • Schulmeister, M.K., J.J. Butler, Jr., J.M. Healey, L. Zheng, D.A. Wysocki, and G.W. McCall, Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization, Ground Water Monit. and Remed., 23(5), 52–62, 2003.

    Article  Google Scholar 

  • Sellwood, S.M., J.M. Healey, S.R. Birk, and J.J. Butler, Jr., Direct-push hydrostratigraphic profiling, Ground Water, 2004 (in review).

    Google Scholar 

  • Shani, U., and D. Or, In situ method for estimating subsurface unsaturated hydraulic conductivity, Water Resour. Res., 31(8), 1863–1870, 1995.

    Article  Google Scholar 

  • Shapiro, A.M., P.A. Hsieh, and F.P. Haeni, Integrating multidisciplinary investigations in the characterization of fractured rock, U.S. Geological Survey Water-Resources Investigations Report 99-4018c, pp. 669–680, 1999.

    Google Scholar 

  • Smith, J.L., Spatial variability of flow parameters in a stratified sand, Math. Geology, 13(1), 1–21, 1981.

    Article  Google Scholar 

  • Sørensen, K.I., F. Effersø, E. Auken, and L. Pellerin, A method to estimate hydraulic conductivity while drilling, Jour. of Hydrology, 260, 15–29, 2002.

    Article  Google Scholar 

  • Stephens, D.B., Vadose Zone Hydrology, Lewis Pub., 1996.

    Google Scholar 

  • Stienstra, P., and J.K. van Deen, Field data collection techniques—Unconventional sounding and sampling methods, In: Engineering Geology of Quaternary Sediments, ed. by N. Rengers, Balkema, pp. 41–55, 1994.

    Google Scholar 

  • Streltsova, T.D., Well Testing in Heterogeneous Formations, Wiley, 1988.

    Google Scholar 

  • Sudicky, E.A., A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process, Water Resour. Res., 22(13), 2069–2082, 1986.

    Google Scholar 

  • Sudicky, E.A., and P.S. Huyakorn, Contaminant migration in imperfectly known heterogeneous groundwater systems, U.S. Natl. Rept. Int. Union Geol. Geophys. 1987–1990, Rev. Geophys., 29, 240–253, 1991.

    Google Scholar 

  • Sutton, D.J., Z.J. Kabala, D.E. Schaad, and N.C. Ruud, The dipole-flow test with a tracer — a new single-borehole tracer test for aquifer characterization, Jour. Contaminant Hydrology, 44(1), 71–101, 2000.

    Article  Google Scholar 

  • Tavenas, F., M. Diene, and S. Leroueil, Analysis of the in situ constant-head permeability test in clays, Can. Geotech. Jour. 27, 305–314, 1990.

    Google Scholar 

  • Taylor, K., S. Wheatcraft, J. Hess, J. Hayworth, and F.J. Molz, Evaluation of methods for determining the vertical distribution of hydraulic conductivity, Ground Water, 28(1), 88–98, 1990.

    Article  Google Scholar 

  • Tidwell, V.C., and J.L. Wilson, Laboratory method for investigating permeability upscaling, Water Resour. Res., 33(7), 1607–1616, 1997.

    Article  Google Scholar 

  • Tosaka, H., K. Masumoto, and K. Kojima, Hydropulse tomography for identifying 3-D permeability distribution, In: High Level Radioactive Waste Management: Proc. of the Fourth Annual International Conference of the ASCE, Reston, VA, 1993.

    Google Scholar 

  • van der Kamp, G., Methods for determining the in situ hydraulic conductivity of shallow aquitards—An overview, Hydrogeology Jour., 9(1), 5–16, 2001.

    Article  Google Scholar 

  • Vesselinov, V.V., S.P. Neuman, and W.A. Illman, Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 1. Methodology and borehole effects, Water Resour. Res., 37(12), 3001–3017, 2001a.

    Article  Google Scholar 

  • Vesselinov, V.V., S.P. Neuman, and W.A. Illman, Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. Equivalent parameters, high-resolution stochastic imaging and scale effects, Water Resour. Res., 37(12), 3019–3041, 2001b.

    Article  Google Scholar 

  • Weeks, E.P., Field determination of vertical permeability to air in the unsaturated zone, U.S. Geological Survey Prof. Paper No. 1051, 1978.

    Google Scholar 

  • White, J., Guidelines for estimating permeability from NMR measurements, DiaLog, 8(1), 2000, http://www.lps.org.uk/dialogweb/archive/nmr_measurements_white/white.htm.

  • Yaramanci, U., G. Lange, and M. Hertrich, Aquifer characterisation using Surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site, Jour. Applied Geophysics, 50, 47–65, 2002.

    Article  Google Scholar 

  • Yeh, T.-C. J., and S. Liu, Hydraulic tomography: Development of a new aquifer test method, Water Resour. Res., 36(8), 2095–2105, 2000.

    Article  Google Scholar 

  • Yeh, T.-C. J., J. Mas-Pla, T.M. Williams, and J.F. McCarthy, Observation and three-dimensional simulation of chloride plumes in a sandy aquifer under forced-gradient conditions, Water Resour. Res., 31(9), 2141–2157, 1995.

    Article  Google Scholar 

  • Young, S.C., and H.S. Pearson, The electromagnetic borehole flowmeter: Description and application, Ground Water Monit. and Remed., 15(2), 138–146, 1995.

    Article  Google Scholar 

  • Zapico, M., S. Vales, and J. Cherry, A wireline piston core barrel for sampling cohesionless sand and gravel below the water table, Ground Water Monit. Rev., 7(3), 74–82, 1987.

    Article  Google Scholar 

  • Zheng, C., and S.M. Gorelick, Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale, Ground Water, 41(2), 142–155, 2003.

    Article  Google Scholar 

  • Zlotnik, V.A., and G. Ledder, Theory of dipole flow in uniform anisotropic aquifers, Water Resour. Res., 32(4), 1119–1128, 1996.

    Article  Google Scholar 

  • Zlotnik, V.A., and B.R. Zurbuchen, Dipole probe: Design and field applications of a single-borehole device for measurements of small-scale variations of hydraulic conductivity, Ground Water, 36(6), 884–893, 1998.

    Article  Google Scholar 

  • Zlotnik, V.A., and B.R. Zurbuchen, Field study of hydraulic conductivity in a heterogeneous aquifer: Comparison of single-borehole measurements using different instruments, Water Resour. Res., 39(4), 1101, doi:10.1029/2002WR001415, 2003.

    Article  Google Scholar 

  • Zlotnik, V.A., B.R. Zurbuchen, and T. Ptak, The steady-state dipole-flow test for characterization of hydraulic conductivity statistics in a highly permeable aquifer: Horkheimer Insel site, Germany, Ground Water, 39(4), 504–516, 2001.

    Article  Google Scholar 

  • Zurbuchen, B.R., V.A. Zlotnik, and J.J. Butler, Jr., Dynamic interpretation of slug tests in highly permeable aquifers, Water Resour. Res., 38(3), 1025, doi:10.1029/2001WR000354, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Butler, J.J. (2005). Hydrogeological Methods for Estimation of Spatial Variations in Hydraulic Conductivity. In: Rubin, Y., Hubbard, S.S. (eds) Hydrogeophysics. Water Science and Technology Library, vol 50. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3102-5_2

Download citation

Publish with us

Policies and ethics