Skip to main content

Stochastic Forward and Inverse Modeling: The “Hydrogeophysical” Challenge

  • Chapter

Part of the book series: Water Science and Technology Library ((WSTL,volume 50))

Abstract

Successful integration of geophysical and hydrogeological datasets represents a recent and major breakthrough in hydrogeological site characterization. As discussed in Chapter 1 of this volume, the value of integrating these datasets for characterization lies in the extensive spatial coverage offered by geophysical techniques and in their ability to sample the subsurface in a minimally invasive manner. However, this breakthrough is associated with a few difficulties. One difficulty resides in the non-unique relationships that sometimes exist between hydrogeological and geophysical attributes; integration of hydrogeological and geophysical data under non-unique conditions has been investigated by Rubin et al. (1992), Copty et al. (1993), Hubbard et al. (1997) and Hubbard and Rubin (2000). This non-uniqueness can exist even under idealized conditions of error-free measurements in natural systems comprised of multiple hydrogeologically significant units (i.e., Prasad, 2003), and it is only exacerbated by measurement errors. In applications, the situation becomes even more difficult because the rock type at the location associated with the geophysical attribute is almost always unknown, and thus the applicable petrophysical model is also almost always unknown. Another difficulty stems from the disparity between the spatial resolution of the geophysical attributes and the scale that characterizes the hydrogeological attributes, collected for example, through boreholes (c.f., Ezzedine et al., 1999). This scale disparity hinders efforts to develop unique and accurate relations between the two types of measurements, and introduces another source of uncertainty.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. Control, AC-19, 716–723, 1974.

    Article  Google Scholar 

  • Alumbaugh, D., P. Change, L. Paprocki, J. Brainard, R.J. Glass, and C.A. Rautman, Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: a study of accuracy and repeatability, Water Resour. Res., 38, doi: 2001WRR001028, 2002.

    Google Scholar 

  • Binley, A., P. Winship, L.J. West, M. Pokar and R. Middleton, Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles, Journal of Hydrology, 267(3–4), 160–172, 2002.

    Article  Google Scholar 

  • Carrera, J., and S.P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 1, Maximum likelihood method incorporating prior information, Water Resour. Res., 22(2), 199–210, 1986a.

    Google Scholar 

  • Carrera, J., and S.P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 2, Uniqueness, stability and solution algorithms, Water Resour. Res., 22(2), 211–227, 1986b.

    Google Scholar 

  • Carrera, J., and S.P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 3, Application to synthetic and field data, Water Resour. Res., 22(2), 228–242, 1986c.

    Google Scholar 

  • Chen, J., S. Hubbard, and Y. Rubin, Estimating the hydraulic conductivity at the South Oyster site based on the normal linear regression model, Water Resour. Res., 37(6), 1603–1613, 2001.

    Article  Google Scholar 

  • Chen, J., and Y. Rubin, An effective Bayesian model for lithofacies estimation using geophysical data, Water Resour. Res., 39(5), 2003.

    Google Scholar 

  • Chen, J., S. Hubbard, Y. Rubin, C. Murray, E. Roden, and E. Majer, Geochemical characterization using geophysical data: a case study at the South Oyster bacterial transport site in Virginia, Water Resour. Res, 2004 (submitted).

    Google Scholar 

  • Christensen, S., and R.L. Cooley, Evaluation of prediction intervals for expressing uncertainties in groundwater flow model predictions, Water Resour. Res. 35(9), 2627–2639, 1999.

    Article  Google Scholar 

  • Copty, N., Y. Rubin, and G. Mavko, Geophysical-hydrological identification of field permeabilities through Bayesian updating, Water Resour. Res., 29(8), 2813–1725, 1993.

    Article  Google Scholar 

  • Copty, N., and Y. Rubin, A stochastic approach to the characterization of lithofacies from surface seismic and well data, Water Resour. Res., 31(7), 1673–1686, 1995.

    Article  Google Scholar 

  • Day-Lewis, F., P.A. Hsieh, and S.M. Gorelick, Identifying fracture-zone geometry using simulated annealing and hydraulic connection data, Water Resour. Res. 36(7), 1707–1721, 2000.

    Article  Google Scholar 

  • Deutsch, C. and A.G. Journel, GSLIB: Geostatistical Software Library and Users Guide, Oxford Univ. Press, New York, 1998.

    Google Scholar 

  • Ezzedine, S., Y. Rubin, and J. Chen, Bayesian method for hydrogeological site characterization using borehole and geophysical survey data: Theory and application to the Lawrence Livermore National Laboratory Superfund site, Water Resour. Res., 35(9), 2671–2683, 1999.

    Article  Google Scholar 

  • Forster, M.R., Key concepts in model selection: Performance and generalizability, J. Math Psychol., 44, 205–231, 2000.

    Article  Google Scholar 

  • Gaganis, P., and L. Smith, A Bayesian approach to the quantification of the effect of model error on the predictions of groundwater models, Water Resour. Res., 37(9), 2309–2322, 2001

    Article  Google Scholar 

  • Hoeksema, R.J., and P.K. Kitanidis, An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling, Water Resour. Res., 20(7), 1003–1020, 1984.

    Article  Google Scholar 

  • Hoeksema, R.J., and P.K. Kitanidis, Analysis of the spatial structure of properties of selected aquifers, Water Resour. Res., 21(4), 563–572, 1985.

    Google Scholar 

  • Hubbard, S., Y. Rubin, and E. Majer, Ground penetrating radar-assisted saturation and permeability estimation in bimodal systems, Water Resour. Res., 33(5), 1997.

    Google Scholar 

  • Hubbard, S., Stochastic characterization of hydrogeological properties using geophysical data, Ph.D. Dissertation, University of California at Berkeley, 1998.

    Google Scholar 

  • Hubbard, S., Y. Rubin, and E. Majer, Spatial correlation structure estimation using geophysical and hydrological data, Water Resour. Res., 35(6), 1709–1725, 1999.

    Article  Google Scholar 

  • Hubbard, S., and Y. Rubin, Integrated hydrogeological-geophysical site characterization techniques, J. Contam. Hydrology, 45, 3–34, 2000.

    Article  Google Scholar 

  • Hubbard, S. and Y. Rubin, Hydrogeophysics: state-of-the-discipline, EOS, 83(51), 602–606, 2002.

    Article  Google Scholar 

  • Huisman, J.A., S.S. Hubbard, J.D. Redman, and A.P. Annan, Measuring soil water content with ground penetrating radar: A review, Vadose Zone Journal, 4(2), 476–491, 2003.

    Article  Google Scholar 

  • Hubbard, S., J. Chen, J. Peterson, E.L. Majer, K.H. Williams, D.J. Swift, B. Mailloux, and Y. Rubin, Hydrogeological characterization of the South Oyster Bacterial Transport Site using geophysical data, Water Resour. Res., 37(10), 2431–2456, 2001.

    Article  Google Scholar 

  • Hyndman, D.W., and J.M. Harris, Traveltime inversion for the geometry of aquifer lithologies, Geophysics, 61(6), 1996.

    Google Scholar 

  • Hyndman, D.W., J.M. Harris, and S.M. Gorelick, Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30(7), 1965–1977, 1994.

    Article  Google Scholar 

  • Hyndman, D.W., and S.M. Gorelick, Estimating lithologic and transport properties in three dimensions using seismic and tracer data: The Kesterson aquifer, Water Resour. Res., 32(9), 2659–2670, 1996.

    Article  Google Scholar 

  • Kitanidis, P.K., Introduction to Geostatistics, Cambridge University Press, 1997

    Google Scholar 

  • Kitanidis, P.K., and E.G. Vomvoris, A geostatistical approach to the inverse problem in groundwater modeling, Water Resour. Res., 19, 677–690, 1983.

    Google Scholar 

  • Knight, R., P. Tercier, and H. Jol, The role of ground penetrating radar and geostatistics in reservoir description, Leading Edge, 16(11), 1576–1583, 1997.

    Article  Google Scholar 

  • Knoll, M., R. Knight, and E. Brown, Can accurate estimates of permeability be obtained from measurements of dielectric properties? SAGEEP Annual Meeting Extended Abstracts, Environ. and Eng. Geophys. Soc., Englewood, CO., 1995.

    Google Scholar 

  • Luis, S.J., and D. McLaughlin, A stochastic approach to model validation, Adv. Water Resour., 15, 15–32, 1992.

    Article  Google Scholar 

  • Mailloux, B.J., M.E. Fuller, T.C. Onstott, J. Hall, H. Dong, M.F. DeFlaun, S.H. Streger, R.K. Rothmel, M. Green, D.J.P. Swift, and J. Radke, The role of physical, chemical and microbial heterogeneity on the field-scale transport and attachment of bacteria, Accepted for Publication in Water Resour. Res., 2003.

    Google Scholar 

  • Marion, D., A. Nur, H. Yin, and D. Han, Compressional velocity and porosity in sand-clay mixtures, Geophysics, 57, 554–563, 1992.

    Article  Google Scholar 

  • Mavko, G., T. Mukerji, and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge University Press, New York, 1998.

    Google Scholar 

  • Maxwell, R., W. Kastenberg, and Y. Rubin, Hydrogeological site characterization and its implication on human risk assessment, Water Resour. Res., 35(9), 2841–2855, 1999.

    Article  Google Scholar 

  • McLaughlin, D., L.R. Townley, A reassessment of the groundwater inverse problem, Water Resour. Res., 32(5), 1131–1161, 1996.

    Article  Google Scholar 

  • Mood, A.M., F.A. Graybill, and D.C. Boes, Introduction to the Theory of Statistics, 3 rd Edition, McGraw-Hill, New York., 1963.

    Google Scholar 

  • Peterson, J.E., Jr., Pre-inversion corrections and analysis of radar tomographic data, Journal of Env. and Eng. Geophysics, 6, 1–17, 2001.

    Article  Google Scholar 

  • Poeter, EP, S.A. McKenna, and W.L. Wingle, Improving groundwater project analysis with geophysical data, The Leading Edge, 1675–1681, November 1997.

    Google Scholar 

  • Prasad, M., Velocity-permeability relations within hydraulic units, Geophysics, 68(1), 108–117, 2003.

    Article  Google Scholar 

  • Purvance, D.T., and R. Andricevic, Geoelectric characterization of the hydraulic conductivity field and its spatial structure at variable scales, Water Resour. Res., 36(10), 2915–1924, 2000.

    Article  Google Scholar 

  • Rubin, Y., and G. Dagan, Stochastic identification of transmissivity and effective recharge in steady groundwater flow, 1, Theory, Water Resour. Res., 23(7), 1175–1192, 1987a.

    Google Scholar 

  • Rubin, Y., and G. Dagan, Stochastic identification of transmissivity and effective recharge in steady groundwater flow, 2, Case study, Water Resour. Res., 23(7), 1193–1200, 1987b.

    Google Scholar 

  • Rubin, Y., G. Mavko, and J. Harris, Mapping permeability in heterogeneous aquifers using hydrological and seismic data, Water Resour. Res., 28(7), 1192–1700, 1992.

    Article  Google Scholar 

  • Rubin, Y., Applied Stochastic Hydrogeology, Oxford University Press, 2003.

    Google Scholar 

  • Rubin, Y., and G. Dagan, Conditional estimation of solute travel time in heterogeneous formations: Impact of the transmissivity measurements, Water Resour. Res., 28(4), 1033–1040, 1992.

    Article  Google Scholar 

  • Rubin, Y., and G. Dagan, Stochastic analysis of the effects of boundaries on spatial variability in groundwater flows: 1. Constant head boundary, Water Resour. Res., 24(10), 1689–1697, 1988.

    Google Scholar 

  • Scheibe, T.D., and Y. Chien, An evaluation of conditioning data for solute transport prediction, Accepted for Publication in Ground Water, 2003.

    Google Scholar 

  • Schweppe, F.C., Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, N.J., 1973.

    Google Scholar 

  • Slater, L., and D.P. Lesmes, Electrical-hydraulic relationships observed for unconsoli-dated sediments, Water Resour. Res., 38(10), 1213, doi: 10.1029/2001WR001075, 2002.

    Article  Google Scholar 

  • Stone, C., A Course in Probability and Statistics, Duxbury, Boston, Mass., 1995.

    Google Scholar 

  • Tarantola, A., Inverse Problem Theory, Elsevier, New York, 1987.

    Google Scholar 

  • Woodbury, W., and Y. Rubin, A full-Bayesian approach to parameter inference from tracer travel time moments and investigation of scale-effects at the Cape Cod experimental site, Water Resour. Res., 36(1), 159–171, 2000.

    Article  Google Scholar 

  • Woodbury, A.D., and T.J. Ulrych, A full-Bayesian approach to the groundwater inverse problem for steady state flow, Water Resour. Res., 36(8), 2081–2093, 2000.

    Article  Google Scholar 

  • Yeh, T.-C., J., S. Liu, R.J. Glass, K. Baker, J. R. Brainard, D. L. Alumbaugh, and D. LaBrecque, A geostatistically based inverse model for electrical resistivity surveys and its application to vadose zone hydrology, Water Resour. Res., 38(12), 1278, December 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Rubin, Y., Hubbard, S. (2005). Stochastic Forward and Inverse Modeling: The “Hydrogeophysical” Challenge. In: Rubin, Y., Hubbard, S.S. (eds) Hydrogeophysics. Water Science and Technology Library, vol 50. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3102-5_17

Download citation

Publish with us

Policies and ethics