Skip to main content

Hydrogeophysical Case Studies at the Local Scale: The Saturated Zone

  • Chapter
Hydrogeophysics

Part of the book series: Water Science and Technology Library ((WSTL,volume 50))

Abstract

Modern geophysical methods provide significant promise for estimating subsurface aquifer properties of the saturated zone in a minimally invasive manner. Mapping aquifer boundaries and internal stratification, estimating spatial distribution of hydrogeologic parameters, or monitoring tracer and contaminant plumes are examples of geophysical tools successfully applied. A general benefit of geophysical methods is the ability to collect high-resolution data in the horizontal dimension, where core/borehole data is nearly always limited. The complementary nature of core/borehole data and 2-D or 3-D geophysical data promises to help improve the accuracy and resolution of aquifer characterization at a variety of scales. However, one significant remaining difficulty is transforming geophysical parameters into flow and transport properties. A series of approaches and petrophysical models have been developed to help in this transformation (e.g., see Chapter 4 and Chapter 9 of this volume), but often complex and non-unique parameter relationships complicate data analysis and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araktingi, U.G., and W.M. Bashore, Effects of properties in seismic data on reservoir characterization and consequent fluid flow predictions when integrated with well logs, Paper presented at 67th Annual SPE Conference, Soc. Pet. Eng., Washington, D.C., Oct. 4–7, 1992.

    Google Scholar 

  • Atekwana, E.A., W.A. Sauck, and D.D. Werkema, Investigations of geoelectrical signatures at a hydrocarbon contaminated site, Journal of Applied Geophysics, 44, 167–180, 2000.

    Article  Google Scholar 

  • Baker, G.S., D.W. Steeples, C. Schmeissner, and K.T. Spikes, Ultrashallow seismic reflection monitoring of seasonal fluctuations in the water table, Environmental and Engineering Geoscience, 6(3), 271–277, 2000.

    Google Scholar 

  • Baines, D., D.G. Smith, D. Froese, P. Bauman, and G. Nimeck, Electrical resistivity ground imaging (ERGI): a new tool for mapping the lithology and geometry of channe-belts and valley-fills, Sedimentology, 49, 441–449, 2002.

    Article  Google Scholar 

  • Barrash, W., M.D. Knoll, D.W. Hyndman, T. Clemo, E.C. Reboulet, and E.M. Hausrath, Tracer/Time-Lapse Radar Imaging Test at the Boise Hydrogeophysical Research Site, In: Proceedings of SAGEEP03, The Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 163–174, San Antonio, TX, 2003.

    Google Scholar 

  • Bentley, L.R., and N.M. Trenholm, The accuracy of water table elevation estimates determined from ground penetrating radar data, Journal of Environmental and Engineering Geophysics, 7(1), 37–53, 2002.

    Google Scholar 

  • Beres, M., and F.P. Haeni, Application of ground-penetrating-radar methods in hydrogeologic studies, Ground Water, 29(3), 375–387, 1991.

    Article  Google Scholar 

  • Beres, M., A.G. Green, P. Huggenberger, and H. Horstmeyer, Mapping the architecture of glaciofluvial sediments with three-dimensional georadar, Geology, 23(12), 1087–1090, 1995.

    Article  Google Scholar 

  • Bevc, D., and H.F. Morrison, Borehole-to-surface electrical monitoring of a salt water injection experiment, Geophysics, 56, 769–777, 1991.

    Article  Google Scholar 

  • Birkelo, B.A., D.W. Steeples, R.D. Miller, and M. Sophocleous, Seismic reflection study of a shallow aquifer during a pumping test, Ground Water, 25(6), 703–709, 1987.

    Article  Google Scholar 

  • Bourbie, T., O. Coussy, and B. Zinszner, Acoustics of Porous Media, Gulf Publishing Company, Houston, 1987.

    Google Scholar 

  • Brewster, M.L., and A.P. Annan, Ground-penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar, Geophysics, 59(8), 1211–1221, 1994.

    Article  Google Scholar 

  • Büker, F., A.G. Green, and H. Horstmeyer, 3-D high-resolution reflection seismic imaging of unconsolidated glacial and glaciolacustrine sediments: Processing and interpretation, Geophysics, 65(1), 18–34, 2000.

    Article  Google Scholar 

  • Chen, J., S. Hubbard, and Y. Rubin, Estimating hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal regression model, Water Resour. Res., 37(6), 1603–1613, 2001.

    Article  Google Scholar 

  • Daily, W.D., and A.L. Ramirez, Electrical imaging of engineered hydraulic barriers, Geophysics, 65(1), 83–94, 2000.

    Article  Google Scholar 

  • Day-Lewis, F.D., J.M. Harris, and S.M. Gorelick, Time-lapse inversion of crosswell radar data, Geophysics, 67(6), 1740–1752, 2002.

    Article  Google Scholar 

  • Day-Lewis, F.D., J.W. Lane, Jr., J.M. Harris, and S.M. Gorelick, Time-lapse imaging of saline-tracer transport in fractured rock using difference-attenuation radar tomography, Water Resour. Res., 39(10), 1290, 10.1029/2002WR001722, 2003

    Article  Google Scholar 

  • Deeds, J., and J. Bradford, Characterization of an aquitard and direct detection of LNAPL at Hill Air Force Base using GPR AVO and migration velocity analyses, In: Ninth International Conference on Ground Penetrating Radar (GPR 2002), edited by S. Koppenjan, and H. Lee, SPIE, 4758, pp. 323–329, Santa Barbara, California, 2002.

    Google Scholar 

  • Deutsch, C.V., and A.G. Journel, GSLIB: Geostatistical Software Library and User’s Guide, Oxford University Press, 1998.

    Google Scholar 

  • Dietrich, P., T. Fechner, J. Whittaker, and G. Teutsch, An integrated hydrogeophysical approach to subsurface characterization, In: Groundwater Quality: Remediation and Protection, edited by M. Herbert, and K. Kovar, pp. 513–519, IAHS Publ., 250, Tübingen, Germany, 1998.

    Google Scholar 

  • Dvorkin, J., G. Mavko, and A. Nur, Squirt flow in fully saturated rocks, Geophysics, 60(1), 97–107, 1995.

    Article  Google Scholar 

  • Endres, A.L., W.P. Clement, and D.L. Rudolph, Ground penetrating radar imaging of an aquifer during a pumping test, Ground Water, 38(4), 566–576, 2000.

    Article  Google Scholar 

  • Fechner, T., and P. Dietrich, Lithological inversion of tomographic data, In: 3rd Ann. Mtg., Environ. and Eng. Geophys. Soc., Euro. Section, pp. 355–358, Aarhus, Denmark, 1997.

    Google Scholar 

  • Fried, J.J., Groundwater Pollution: Developments in Water Science 4, Elsevier, 1975.

    Google Scholar 

  • Goldstein, S.E., T.C. Johnson, M.D. Knoll, W. Barrash, and W.P. Clement, Borehole radar attenuation-difference tomography during the tracer/time-lapse test at the Boise Hydrogeophysical Research Site, In: Proceedings of SAGEEP03, The Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 147–162, San Antonio, TX, 2003.

    Google Scholar 

  • Greenhouse, J., M. Brewster, G. Schneider, J.D. Redman, A.P. Anna, G.R. Olhoeft, J. Lucius, K. Sander, and A. Mazzella, Geophysics and solvents: The Borden Experiment, The Leading Edge of Exploration, 12, 261–267, 1993.

    Article  Google Scholar 

  • Grumman, D.L., and J.J. Daniels, Experiments on the detection of organic contaminants in the vadose zone, Journal of Environmental and Engineering Geophysics, 0(1), 31–38, 1995.

    Google Scholar 

  • Heinz, J., S. Kleineidam, G. Teutsch, and T. Aigner, Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology, Sedimentary Geology, 158, 1–23, 2003.

    Article  Google Scholar 

  • Hubbard, S.S., J. Chen, J.E. Peterson, E.L. Majer, K.H. Williams, D.J. Swift, B. Mailloux, and Y. Rubin, Hydrogeological characterization of the South Oyster Bacterial Transport Site using geophysical data, Water Resour. Res., 37(10), 2431–2456, 2001.

    Article  Google Scholar 

  • Hubbard, S.S., Y. Rubin, and E. Majer, Spatial correlation structure estimation using geophysical and hydrogeological data, Water Resour. Res., 35, 1809–1825, 1999.

    Article  Google Scholar 

  • Huggenberger, P., Radar facies: Recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, NE Switzerland, In: Geological Society Special Publications No 75, pp. 163–176, 1993.

    Article  Google Scholar 

  • Hyndman, D.W., and S.M. Gorelick, Estimating lithologic and transport properties in three dimensions using seismic and tracer data, Water Resour. Res., 32(9), 2659–2670, 1996.

    Article  Google Scholar 

  • Hyndman, D.W., J.M. Harris, and S.M. Gorelick, Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30(7), 1965–1977, 1994.

    Article  Google Scholar 

  • Hyndman, D.W., and J.M. Harris, Traveltime inversion for the geometry of aquifer lithologies, Geophysics, 61(6), 1996.

    Google Scholar 

  • Hyndman, D.W., S.M. Gorelick, and J.M. Harris, Inferring the relationship between seismic slowness and hydraulic conductivity in heterogeneous aquifers, Water Resour. Res., 36(8), 2121–2132, 2000.

    Article  Google Scholar 

  • Jarvis K.D. and R.J. Knight, Aquifer heterogeneity from SH-wave seismic impedance inversion, Geophysics, 67(5), 1548–1557, 2002.

    Article  Google Scholar 

  • Kemna, A., J. Vanderborght, B. Kulessa, and H. Vereecken, Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, Journal of Hydrology, 267(3–4), 125–146, 2002.

    Article  Google Scholar 

  • Kick, J.F., Depth to bedrock using gravimetry, The Leading Edge of Exploration, 4(4), 38–42, 1985.

    Article  Google Scholar 

  • Klingbeil, R., S. Kleineidam, U. Asprion, T. Aigner, and G. Teutsch, Relating lithofacies to hydrofacies: Outcrop-based hydrogeological characterization of Quaternary gravel deposits, Sedimentary Geology, 129(3–4), 299–310, 1999.

    Article  Google Scholar 

  • Kowalsky, M.B., Dietrich, P., Teutsch, G., and Y. Rubin, Forward modeling of GPR data usingdigitized outcrop images and multiple scenarios of water saturation, Water Resour. Res., 37(6), 1615–1625, 2001.

    Article  Google Scholar 

  • Lesmes, D.P., S.M. Decker, and D.C. Roy, A multiscale radar-stratigraphic analysis of fluvial aquifer heterogeneity, Geophysics, 67(5), 1452–1464, 2002.

    Article  Google Scholar 

  • Lunt, I.A., J.S. Bridge, and R.S. Tye, Development of a 3-D depositional model of braided river gravels and sands to improve aquifer characterization, In: Aquifer Characterization, SEPM Concepts in Paleontology and Sedimentology Series, J.S. Bridge and D.W Hyndman, eds., 2003 (in press).

    Google Scholar 

  • Macfarlane, P.A., J.H. Doveton, H.R. Feldmann, J.J. Butler, J.M.J. Combes, and D.R. Collins, Aquifer/aquitard units of the Dakota aquifer system in Kansas: Methods of delineation and sedimentary architecture effects on groundwater flow and flow properties, Journal of Sedimentary Research, B 64/4, 464–480, 1994.

    Google Scholar 

  • McMechan, G.A., G.C. Gaynor, and R.B. Szerbiak, Use of ground-penetrating radar for 3-D sedimentological characterization of clastic reservoir analogs, Geophysics, 62(3), 786–796, 1997.

    Article  Google Scholar 

  • Miller, R.D., D.W. Steeples, R.W. Hill, and B.L. Gaddis, Identifying intra-alluvial and bedrock structures shallower than 30 meters using seismic reflection techniques, In: Geotechnical and Environmental Geophysics, Volume 2: Environmental and Groundwater, edited by S. Ward, pp. 75–88, Society of Exploration Geophysics, 1990.

    Google Scholar 

  • Miall, A.D., Reservoir heterogeneities in fluvial sandstones: Lessons from outcrop studies, AAPG Bulletin, 72(6), 682–697, 1988.

    Google Scholar 

  • Mohrlok, U. and Dietrich, P., Exploration of preferential transport paths using geoelectrical salt tracer tests. In: Field Screening Europe 2001—Proceedings of the Second International Conference on Strategies and Techniques for the Investigation and Monitoring of Contaminated Sites, W. Breh, J. Gottlieb, H. Hötzl, F. Kern, T. Liesch, and R. Niessner, eds., pp. 327–330, 2001.

    Google Scholar 

  • Nitsche, F.O., A.G. Green, H. Horstmeyer, and F. Büker, Late Quaternary depositional history of the Reuss delta, Switzerland: Constraints from high-resolution seismic reflection and georadar surveys, Journal of Quaternary Science, 17(2), 131–143, 2002.

    Article  Google Scholar 

  • Oldenborger, G.A., R.A. Schincariol, and L. Mansinha, Radar determination of the spatial structure of hydraulic conductivity, Ground Water, 41(1), 24–32, 2003.

    Article  Google Scholar 

  • Olhoeft, G.R., Geophysical detection of hydrocarbon and organic chemical contaminants, In: Proceedings of SAGEEP92, The Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 587–595, Oakbrook, IL, 1992.

    Google Scholar 

  • Pellerin, L., Application of electrical and electromagnetic methods for environmental and geotechnical investigations, Surveys in Geophysics, 23, 101–132, 2002.

    Article  Google Scholar 

  • Ramirez, A.L., W.D. Daily, D. Labrecque, E. Owen, and D. Chesnut, Monitoring an underground steam injection process using electrical-resistance tomography, Water Resour. Res., 29(1), 73–87, 1993.

    Article  Google Scholar 

  • Rea, J., and R. Knight, Geostatistical analysis of ground-penetrating radar data: A means of describing spatial variation in the subsurface, Water Resour. Res., 34(3), 329–339, 1998.

    Article  Google Scholar 

  • Regli C., P. Huggenberger, and M. Rauber, Interpretation of drill core and georadar data of coarse gravel deposits, Journal of Hydrology, 255(1–4), 234–252, 2002.

    Article  Google Scholar 

  • Sangree, J.M., and J.M. Widmier, Interpretation of depositional facies from seismic data, Geophysics, 44, 131–160, 1979.

    Article  Google Scholar 

  • Sandberg, S.K., L.D. Slater, and R. Versteeg, An integrated geophysical investigation of the hydrogeology of an anisotropic unconfined aquifer, Journal of Hydrology, 267(3–4), 227–243, 2002.

    Article  Google Scholar 

  • Slater, L., A. Binley, and D. Brown, Electrical imaging of fractures using ground-water salinity change, Ground Water, 35, 436–442, 1997.

    Article  Google Scholar 

  • Smith, D.G., and H.M. Jol, Ground-penetrating radar investigation of a Lake Bonneville Delta, Provo level, Brigham City, Utah, Geology, 20(12), 1083–1086, 1992.

    Article  Google Scholar 

  • Tercier, P., R. Knight, and H. Jol, A comparison of the correlation structure in GPR images of deltaic and barrier-spit depositional environments, Geophysics, 65(4), 1142–1153, 2000.

    Article  Google Scholar 

  • Tronicke, J., N. Blindow, R. Groß, and M.A. Lange, Joint application of surface electrical resistivity-and GPR-measurements for groundwater exploration on the island of Spiekeroog, northern Germany, Journal of Hydrology, 223(1–2), 44–53, 1999.

    Article  Google Scholar 

  • Tronicke, J., P. Dietrich, U. Wahlig, and E. Appel, Integrating surface georadar and crosshole radar tomography: A validation experiment in braided stream deposits, Geophysics, 67(5), 1495–1504, 2002.

    Article  Google Scholar 

  • Tronicke, J., K. Holliger, W. Barrash, M.D. Knoll, 2004, Multivariate analysis of crosshole georadar velocity and attenuation tomograms for aquifer zonation, Water Resour. Res., 40(1), W01519, 10.1029/2003WR002031.

    Google Scholar 

  • Tsoflias, G.P., T. Halihan, and J.M. Sharp, Monitoring pumping test response in a fractured aquifer using ground-penetrating radar, Water Resour. Res., 37(5), 1221–1229, 2001.

    Article  Google Scholar 

  • van Overmeeren, R.A., Radar facies of unconsolidated sediments in The Netherlands: A radar stratigraphy interpretation method for hydrogeology, Journal of Applied Geophysics, 40, 1–18, 1998.

    Article  Google Scholar 

  • Ward, S. H., editor, Geotechnical and Environmental Geophysics, Volumes I–III, Investigations in Geophysics #5, Society of Exploration Geophysicists, 1990.

    Google Scholar 

  • White, P.A., Measurement of groundwater parameters using salt-water injection and surface resistivity, Ground Water, 26, 179–186, 1988.

    Article  Google Scholar 

  • White, P.A., Electrode arrays for measuring groundwater flow direction and velocity, Geophysics, 59(2), 192–201, 1994.

    Article  Google Scholar 

  • Whittaker, J., and G. Teutsch, Numerical simulation of subsurface characterization methods: application to a natural aquifer analogue, Advances in Water Resources, 22(8), 819–829, 1999.

    Article  Google Scholar 

  • Yamamoto, T., T. Nye, and M. Kuru, Imaging the permeability structure of a limestone aquifer by crosswell acoustic tomography, Geophysics, 60, 1634–1645, 1995.

    Article  Google Scholar 

  • Yamamoto, T., Imaging the permeability structure within the near-surface sediments by acoustic crosswell tomography, Journal of Applied Geophysics, 47, 1–11, 2001.

    Article  Google Scholar 

  • Yaramanci, U., G. Lange, and M. Hertrich, Aquifer characterisation using surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site, Journal of Applied Geophysics, 50, 47–65, 2002.

    Article  Google Scholar 

  • Young, R.A., and Y. Sun, 3-D ground-penetrating radar imaging of a shallow aquifer at Hill Air Force Base, Utah, Journal of Environmental and Engineering Geophysics, 1(2), 97–108, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Hyndman, D., Tronicke, J. (2005). Hydrogeophysical Case Studies at the Local Scale: The Saturated Zone. In: Rubin, Y., Hubbard, S.S. (eds) Hydrogeophysics. Water Science and Technology Library, vol 50. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3102-5_13

Download citation

Publish with us

Policies and ethics